TÍCH PHÂN VÀ ỨNG DỤNG Nếu F(x) là một nguyên hàm của f(x) thì F(b) – F(a) = 1. Diện tích hình phẳng giới hạn bởi các đường: y = f(x), x = a, x = b và y = 0 là S = (với a < b) 2. Thể tích khối tròn xoay hình thành khi quay quanh trục Ox một hình (H) giới hạn bởi các đường: y = f(x), x = a, x = b, y = 0 là V = Câu 1. Tính I = A. 1 B. 2 C. 3 D. 4 Câu 2. Tính I = A. B. C. D. Câu 3. Tính I = A. π/2 – 2 B. π/2 – 1 C. π/2 + 2 D. π/2 + 1 Câu 4. Tính I = A. e + 2ln 3 B. e + 2ln 3 + 1 C. e – 1 + 2ln 3 D. e + 1 – 2ln 3 Câu 5. Tính I = A. I = 1/3 B. I = 2/3 C. I = 1/2 D. I = 1/5 Câu 6. Tính I = A. I = 3/2 B. I = 1/2 C. I = 1/3 D. I = 2/3 Câu 7. Tính I = A. I = 15/4 B. I = 9/4 C. I = 7/2 D. I = 11/4 Câu 8. Tính I = A. 5 B. 6 C. 7 D. 9 Câu 9. Tính I = A. I = 5/3 B. I = 8/3 C. I = 11/3 D. I = 7/3 Câu 10. Tính I = A. I = 1/10 B. I = 1/5 C. I = 2/5 D. I = 3/10 Câu 11. Tính I = A. 1 B. 2 C. 1/2 D. 3/2 Câu 12. Tính I = A. 2 B. 1 C. 3 D. 4 Câu 13. Tính I = A. I = ln (2 + ) B. I = C. I = ln (2 – ) D. I = Câu 14. Tính I = A. 111/30 B. 113/30 C. 116/15 D. 112/15 Câu 15. Tính I = A. –72/5 B. –72/7 C. –66/5 D. –66/17 Câu 16. Tính I = A. I = 4/3 B. I = 2/3 C. I = 1/3 D. I = 1/6 Câu 17. Tính I = A. B. 2 C. 3 D. 2 Câu 18. Tính I = A. 2π B. 2π + 6 C. 4π D. 4π – 3 Câu 19. Tính I = A. B. C. D. Câu 20. Tính I = A. I = π/4 + 2/3 B. I = π/6 + 5/4 C. I = π/3 + 1/2 D. I = π/2 Câu 21. Tính I = A. I = π/12 B. I = π/16 C. I = π/8 D. I = π/6 Câu 22. Tính I = A. π/3 B. π/4 C. π/6 D. π/2 Câu 23. Tính I = A. e B. e – 1 C. e + 1 D. e + 1/2 Câu 24. Tính I = A. ln 2 + 1 B. ln 2 + 1/2 C. ln 2 – 1 D. ln 2 – 1/2 Câu 25. Tính I = A. I = π/3 B. I = π/6 C. I = π/4 D. I = π/2 Câu 26. Tính I = A. 1 – 2/e B. 1 + 2/e C. 1 + 2e D. 1 – 2e Câu 27. Tính I = A. I = B. I = C. I = D. I = Câu 28. Tính I = A. B. C. D. Câu 29. Tính I = A. 2 – 5e–1. B. 1/2 – e–1. C. 3 – e D. 3e–1 – 1 Câu 30. Tính diện tích hình phẳng giới hạn bởi y = x²; x = 1; x = 2 và y = 0. A. B. C. D. 1 Câu 31. Tính diện tích hình phẳng giới hạn bởi y = x; x = 1 và trục Ox. A. B. C. D. Câu 32. Tính diện tích hình phẳng giới hạn bởi y = x² và y = 2x A. B. C. D. 3 Câu 33. Tính diện tích hình phẳng giới hạn bởi (P): y = x² + 1; trục Oy và tiếp tuyến với (P) tại điểm M(2; 5) A. B. C. 2 D. Câu 34. Tính diện tích hình phẳng giới hạn bởi y = –2x² + x + 3 và trục hoành là A. 125/24 B. 135/24 C. 125/12 D. 65/12 Câu 35. Tính diện tích hình phẳng giới hạn bởi y = –x³ + 3x + 1 và đường thẳng y = 3 là A. 57/4. B. 45/4 . C. 27/4. D. 21/4. Câu 36. Nếu f(x) liên tục trên đoạn [0; 4] và = 4 thì có giá trị là A. 4 B. 2 C. 1 D. 8 Câu 37. Cho biểu thức . Tìm a để biểu thức trên đúng. A. a = 3 B. a = 2 C. a = 1 D. a = 4 Câu 38. Tính diện tích hình phẳng giới hạn bởi (P): y = x² – 4x + 5 và hai tiếp tuyến với (P) tại A(1; 2), B(4; 5). A. B. C. D. Câu 39. Nếu y = f(x) là hàm số lẻ và liên tục trên R thì (với a dương) sẽ có giá trị A. dương B. âm C. bằng 0 D. khác 0 Câu 40. Tính diện tích hình phẳng giới hạn bởi y = 2x² và y = x³ – 3x. A. S = B. S = C. S = D. S = Câu 41. Tính I = A. I = 15/2 B. I = 17/2 C. I = 9/2 D. I = 3. Câu 42. Cho hình (H) giới hạn bởi y = ; x = 0; x = 1; trục Ox. Tính thể tích khối tròn xoay khi quay hình (H) quanh trục Ox. A. π B. πe C. π(e – 1) D. π(e + 1) Câu 43. Cho hình (H) giới hạn bởi y = 2/x; x = 1; x = 2; y = 0. Tính thể tích vật thể tròn xoay khi quay hình (H) quanh trục Ox. A. 4π B. 2π C. 5π D. 3π Câu 44. Cho hình (H) giới hạn bởi y = sin x; x = 0; x = π và y = 0. Tính thể tích vật thể tròn xoay khi quay hình (H) quanh trục Ox. A. V = 2π B. V = π²/2 C. V = π²/4 D. V = π/2 Câu 45. Cho hình (H) giới hạn bởi các đường y = và y = x. Tính thể tích vật thể tròn xoay khi quay hình (H) quanh trục Ox. A. π B. π/6 C. π/3 D. π/2 Câu 46. Cho hình (H) giới hạn bởi các đường y = (1 – x)²; x = 0; x = 2 và y = 0. Tính thể tích vật thể tròn xoay khi quay hình (H) quanh trục Ox. A. 3π/5 B. 4π/5 C. 2π/5 D. 3π/2 Câu 47. Cho hình (H) giới hạn bởi các đường y = x ln x; x = 1; x = e và y = 0. Thể tích vật thể tròn xoay khi quay hình (H) quanh trục Ox là V = Giá trị của a và b lần lượt là A. 27; 5 B. 24; 6 C. 27; 6 D. 24; 5 Câu 48. Cho hình (H) giới hạn bởi các đường y = 2x – x² và y = 0. Tính thể tích vật thể tròn xoay khi quay hình (H) quanh trục Ox. A. 16π/15 B. 14π/15 C. 13π/15 D. 19π/15 Câu 49. Cho hình (H) giới hạn bởi các đường y = x³ – 4x và y = 0. Tính diện tích của hình (H) và thể tích vật thể tròn xoay khi quay hình (H) quanh trục Ox. A. S = 4; V = B. S = 8; V = C. S = 4; V = D. S = 8; V = Câu 50. Tìm n sao cho I = A. n = 3 B. n = 4 C. n = 5 D. n = 6 Câu 51. Tính I = A. I = 8/3 B. I = 2 C. I = 5/2 D. I = 13/6 Câu 52. Tính I = A. I = π/2 B. I = π/4 C. I = π/3 D. I = π/6 Câu 53. Tính I = A. 1/6 B. π/2 C. π/6 D. 0 Câu 54. Tính I = A. I = π²/4 B. I = π/2 C. I = π²/8 D. I = 2π/3 Câu 55. Tính I = A. (π/4) ln 2 B. (π/8) ln 2 C. (1/4) ln 2 D. (1/8) ln 2 Câu 56. Tính I = A. I = (π – 1)/2 B. I = (π + 15)/18 C. I = 1 D. I = π²/10 Câu 57. Tính I = A. I = e ln 2 – 1 B. I = (e – 1)ln 2 C. I = (e + 1)ln 2 D. I = e ln 2
Tài liệu đính kèm: