Ôn tập học kỳ I môn Toán 8

doc 15 trang Người đăng minhphuc19 Lượt xem 1043Lượt tải 0 Download
Bạn đang xem tài liệu "Ôn tập học kỳ I môn Toán 8", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ôn tập học kỳ I môn Toán 8
ÔN TẬP HỌC KỲ I TOÁN 8
 Kiến thức trọng tâm :
1 - Phần đại số :
Phép nhân – chia đơn thức, đa thức, các hằng đẳng thức đáng nhớ.
	7 hằng đẳng thức đáng nhớ
.1) (A + B)2 = A2 + 2AB + B2. .2) (A - B)2 = A2 - 2.AB + B2. .3) A2 - B2 = (A - B)(A + B).
.4) (A + B)3 = A3 + 3A2B + 3AB2 + B3. .5) (A - B)3 = A3 - 3A2B + 3AB2 + B3.
.6) A3 + B3 = (A + B)(A2 - AB + B2). .7) A3 - B3 = (A - B)(A2 + AB + B2). 
Các phương pháp phân tích đa thức thành nhân tử.(Đặt nhân tử chung, dùng hằng đẳng thức, nhóm các hạng tử, phối hợp nhiều phương pháp, tách, thêm bớt các hạng tử)
Định nghĩa phân thức đại số, phân thức bằng nhau. 
Nêu tính chất cơ bản của phân thức
Rút gọn phân thức (để áp dụng nhân – chia các phân thức)
Nêu cách qui đồng mẫu thức nhiều phân thức (để áp dụng cộng – trừ các phân thức)
Nắm vững quy tắc Cộng, trừ, nhân, chia phân thức.
2 - Phần hình học :
Định nghĩa, tính chất, dấu hiệu nhận biết tứ giác, hình thang, hình thang cân, hình bình hành, hình chữ nhật, hình thoi, hình vuông.
Đường trung bình của hình thang 
Đường thẳng song song cách đều.
Diện tích hình chữ nhật, tam giác, hình thang, hình bình hành, tứ giác có hai đường chéo vuông góc, đa giác
A . ĐẠI SỐ
I. NHÂN ĐƠN THỨC VỚI ĐA THỨC; NHÂN ĐA THỨC VỚI ĐA THỨC.
Bài 1: Làm tính nhân: 
1/ xy(x2y – 5x +10y) 2/ (x2 – 1)(x2 + 2x) 3/ (2x -1)(3x + 2)(3 – x)
4/ -2x3y(2x2 – 3y +5yz) 5/ (3xn+1 – 2xn).4x2 6/ (2x2n + 3x2n-1)(x1-2n – 3x2-2n) 
 7/ 3x(x2 – 2)	 8/ x2.(5x3 - x -1/2) 9/ -2x3.(x – x2y)	
10/ x2y.(3xy – x2 + y). 11/ (3x + 2)( 2x – 3)	14/ (x – 2y)(x2y2 - xy + 2y)
12/ (x + 1)(x2 – x + 1)	15/ (x + 3)(x2 + 3x – 5)
13/ (x – y )(x2 + xy + y2)	 16/ (xy – 1).(x3 – 2x – 6).
17/ 2x. (x2 – 7x -3) 18/ ( -2x3 + y2 -7xy). 4xy2
19/(-5x3). (2x2+3x-5) 	20/(2x2 - xy+ y2).(-3x3)
21/(x2 -2x+3). (x-4) 	22/( 2x3 -3x -1). (5x+2)
23/ ( 25x2 + 10xy + 4y2). ( ( 5x – 2y) 	24/( 5x3 – x2 + 2x – 3). ( 4x2 – x + 2)
II. HẰNG ĐẲNG THỨC.
 NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
 Bài 1: Mở ngoặc
a, b, c, 
d, e, f, 
 Bài 2: Tìm x,biết :
a, 
b, 0
Bài 3 : Mở ngoặc 
a, b, c, d, 
Bài 4: Viết biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu: 
a , b, 
c, d, 
e, g, 
Bài 5 :Tìm x biết :
a, b, 
c, d, 
Bài 6: Tính giá trị của biểu thức :
a, A= biết x+2y=-5
b, B= biết 2x-y= c, C= với x=99
Bài 7 :Tìm x biết :
a, b, 
c, d, 
e, 
Bài 8 : Rút gọn biểu thức :
A= 
B= 
C= 
D= 
E= 
F= 
Bài 9 : Chứng minh biểu thức sau không phụ thuộc vào x
a, b. 
Bài 10 : Chứng minh rằng :
a, b , 
c,áp dụng tính biết x+y= 3 và xy=2
Bài 11 : Chứng minh rằng
 với mọi a
Bài 1: Điền vào chổ trống thích hợp:
1/ x2 + 4x + 4 = ........ 
2/ x2 - 8x +16 = ....... 
3/ (x+5)(x-5) = .......
4/ x3 + 12x + 48x +64 = ...... 
5/ x3- 6x +12x - 8 = ........ 
6/ (x+2)(x2-2x +4) = .......
7/ (x-3)(x2+3x+9) =........
8/ x2 + 2x + 1 = 	 9/ x2 – 1 = 
10/ x2 – 4x + 4 = 	 11/ x2 – 4 = 
12/ x2 + 6x + 9 = 	 13/ 4x2 – 9 = 
14/ 16x2 – 8x + 1 = 	 18/ x3 – 8 = 
15/ 9x2 + 6x + 1 = ..	 19/ 8x3 – 1 = 
16/ 36x2 + 36x + 9 = 	
17 x3 + 27 = 
 Bài 2: Thực hiện phép tính: 
1/ ( 2x + 3y )2 	2/ ( 5x – y)2 	3/	4/
5/ (2x + y2)3 	6/ ( 3x2 – 2y)3 ; 	7/
8/ ( x+4) ( x2 – 4x + 16) 	 9/ ( x-3y)(x2 + 3xy + 9y2 ) 10/ 11/ ( x - 3) ( x + 3)	 12/ ( x + 2y)2	13/ (x + 2y + z)(x + 2y – z)
14/ (2 - xy)2	 15/ (x + 3)(x2 – 3x + 9) 16/ (x – 1)(x + 1)	
	 17/ (2x – 1)(4x2 + 2x + 1) 18/ (2x – 1)3	 19/ (5 + 3x)3
Bài 3 :Rút gọn biểu thức: 
 1/ (6x + 1)2 +(6x - 1)2 -2(1 + 6x)(6x -1) 2/ 3(22 + 1)(24 + 1)(28 +1)(216 + 1)
3/ x(2x2 – 3) –x2(5x + 1) + x2 4/ 3x(x – 2) – 5x(1 – x) – 8(x2 – 3)
Bài 4: Tính giá trị biểu thức(Bằng cách hợp lý nếu được):
1/ 1,62 + 4.0,8.3,4 +3,42 2/ 34.54 – (152+ 1)(152 – 1) 
3/ x4 – 12x3 + 12x2 – 12x +111 tại x =11 4/ 5x(4x2 – 2x + 1) – 2x(10x2 – 5x – 2)
5/ 20042 -16; 	 6/ 8922 + 892 . 216 + 1082 	
7/ 10,2 . 9,8 – 9,8 . 0,2 + 10,22 –10,2 . 0,2	 8/ 362 + 262 – 52 . 36 	
9/ 993 + 1 + 3(992 + 99) 	 10/ 37. 43
11/ 20,03 . 45 + 20,03 . 47 + 20,03 . 8 	12/ 15,75 . 175 – 15, 75 . 55 – 15, 75 . 20
Bài 5: Tìm giá trị lớn nhất; nhỏ nhất của biểu thức:
1/ A = x2 – 6x + 11 2/ B = x2 – 20x + 101 3/ C = x2 – 4xy + 5y2 + 10x – 22y + 28
4/ A =5x – x2 5/ B = x – x2 6/ C = 4x – x2 + 3
7/A= x2-6x+11 8/B= –x2+6x-11
III. PHÂN TÍCH ĐA HỨC THÀNH NHÂN TỬ.
Bài 1:Phân tích đa thức thành nhân tử:
1/ 	9/ 	17/ 
2/ 	10/ 	18/ 
3/ 	11/ 	19/ 
4/ 	12/ 20/ 
5/ 	13/ 	21/ 
6/ 	 14/ 22/ 
7 /	15/ x2 – y2 – x – y 	23/ x2 - y2 - 2xy + y2 
8/ 2x2 + 7x + 5	16/ x2 - y2 + 4 - 4x	24/25 - x2 + 2xy - y2
25/ x3 -3x2 – 4x + 12 26/ x4 – 5x2 + 4 27/ (x + y + z)3 –x3 – y3 – z3
28/ (2x + 1)2 – (x – 1)2 29/ x4 + x3 + x + 1 30/ x4 – x3 – x2 + 1
31/ x3 + 3x2 + 3x + 1 – 27z3 32/ x2 – 2xy + y2 –xz + yz 33/ x4 + 4x2 – 5
Bài 2: Phân tích đa thức thành nhân tử
1/ 2x2 – 8x	 9/ x2 + 2xz + 2xy + 4yz
2/ 2x2 – 4x + 2	10/ xz + xt + yz + yt
3/ 3x3 + 12x2 + 12x	11/ x2 – 2xy + tx – 2ty
4/ x3 – 2x2 + x	12/ x2 – 3x + xy – 3y
	 	13/ 2xy + 3z + 6y + xz
5/ x2 + 2x + 1 – 16y2	14/ x2 – xy + x - y
6/ x2 + 6x – y2 + 9	 15/ xz + yz – 2x – 2y
7/ 4x2 + 4x – 9y2 + 1	16/ x2 + 4x – 2xy - 4y + y2
8/ x2 - 6xy + 9y2 – 25z2
Bài 3: Tìm x, biết:
1/ (x -2)2 – (x – 3)(x + 3) = 6	5/ 4(x – 3)2 – (2x – 1)(2x + 1) = 10
2/ (x + 3)2 + ( 4 + x)(4 – x) = 10	 6/ 25(x + 3)2 + (1 – 5x)(1 + 5x) = 8
3/ (x + 4)2 + (1 – x)(1 + x) = 7	 7/ 9 (x + 1)2 – (3x – 2)(3x + 2) = 10
4/ (x – 4)2 – (x – 2)(x + 2) = 6	8/ -4(x – 1)2 + (2x – 1)(2x + 1) = -3
Bài 4: CMR
1/ a2(a+1)+2a(a+1) chia hết cho 6 với a Z
2/ a(2a-3)-2a(a+1) chia hết cho 5 với a Z
3/ x2+2x+2 > 0 với x Z 4/ x2-x+1>0 với x Z 5/ -x2+4x-5 < 0 với x Z
IV. CHIA ĐA THỨC CHO ĐƠN THỨC; ĐATHỨC CHO ĐA THỨC.
Bài 1: Thực hiện phép chia
1/ x12 : (-x10)	 5/ (-2x5 + 3x2 – 4x3): 2x2
2/ (-y)7 : (-y)3	6/ (x3 – 2x2y + 3xy2): 
3/ 6x2y3 : 2xy2	 4/ x3y3 : 
Bài 2: Tìm n N để mỗi phép chia dưới đây là phép chia hết:
1/ (5x3-7x2+x):3xn 2/ 13xny3:2x2y2	3/ (13x4y3-5x3y3+6x2y2):5xnyn
4/ xnyn+1 : x2y5
Bài 3: Làm tính chia:
1/ (x3-3x2+x-3):(x-3)	3/(2x4-5x2+x3-3-3x):(x2-3)
2/(x-y-z)5:(x-y-z)3	4/(x2+2x+x2-4):(x+2)
5/ (2x3 +5x2 – 2x + 3) : (2x2 – x + 1) 6/ (2x3 -5x2 + 6x – 15) : (2x – 5)
7/ (x4 – x – 14) : (x – 2) 8/ (15x3y4 – 10x2y4 + 5xy3) ; (-5xy2)
9/ (x5 + x3 + x2 + 1) : (x3 + 1) 10/ (x2 + 5x + 6) : (x + 3)
11/ x3 + x2 – 12) : (x – 2) 12 / (x3 – 3x2) : (x – 3)
Bài 4:	
1/Tìm n để đa thức x4 - x3 + 6x2 - x + n chia hết cho đa thức x2 - x + 5
2/Tìm n để đa thức 3x3 + 10x2 - 5 + n chia hết cho đa thức 3x + 1
3/ Xác định a để đa thức x3 – 3x + a chia hết cho (x – 1)2 ?
4/ Tìm tất cả các số nguyên n để 2n2 + n – 7 chia hết cho n - 2 ?
. PHÂN THỨC VÀ CÁC PHÉP TOÁN.
Bài 1: Thực hiện phép tính: 
1/ 	2/ 
3/ 	4/ 
5/	6/ 
7/	8/
12/ 	 13/ 
14/ 	 15/ 
16/ 17/ x2 + 1 - 
18/ 
19/ 20/ 
21/ 22/ 23/ 
Bài 2 Tìm điều kiện xác định của các phân thức sau:	
1/ 	2/ 
3/ 	4/ 
Bài 3:
Câu 1:Cho phân thức : P = 
 a/Tìm điều kiện của x để P xác định.
 b/ Tìm giá trị của x để phân thức bằng 1
Câu 2:Cho biểu thức A = 
a.Tìm điều kiện của x để A có nghĩa.
b.Rút gọn A.
c.Tìm x để A .
d.Tìm x để biểu thức A nguyên.
e.Tính giá trị của biểu thức A khi x2 – 9 = 0
Câu 3:Cho biểu thức B =
a.Tìm ĐKXĐ của B
 b.Rút gọn biểu thức B.
c.Với gía trị nào của a thì B = 0.
d.Khi B = 1 thì a nhận giá trị là bao nhiêu? 
Câu 4: Cho biểu thức C 
a.Tìm x để biểu thức C có nghĩa.
b.Rút gọn biểu thức C.
c.Tìm giá trị của x để biểu thức sau 
Câu 5:Cho biểu thức: A = 
 a/ Tìm điều kiện của biến x để giá trị của biểu thức A được xác định?
 b/ Tìm giá trị của x để A = 1 ; A = -3 ?
Câu 6:Cho phân thức A = (x ; x ).
	a/ Rút gọn A
	b/ Tìm x để A = -1
Câu 7: Cho phân thức A = (x 5; x -5).
	a/ Rút gọn A
	b/ Cho A = -3. Tính giá trị của biểu thức 9x2 – 42x + 49
Câu 8: Cho phân thức A = (x 3; x -3).
	a/ Rút gọn A
	b/ Tìm x để A = 4
Câu 9: Cho phân thức A = (x 0; x -5).
	a/ Rút gọn A
	b/ Tìm x để A = - 4.
Câu 10: Cho phân thức: 
 a) Tìm điều kiện của x để phân thức đã cho được xác định?
b) Rút gọn phân thức?
c) Tính giá trị của phân thức sau khi rút gọn với x= 
Câu 11: Cho biểu thức sau:
a) Rút gọn biểu thức A?	
b) Tính giá trị của A khi ?
Câu 12: Cho biểu thức: 
a) Tìm điều kiện xác định của B ? 
b) Tìm x để B = 0; B = .
c) Tìm x để B > 0; B < 0?
Câu 13: Cho biểu thức: 
a) Tìm điều kiện của x để giá trị của biểu thức được xác định?
b) CMR:khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x?
Câu 14: Cho 
a. Tìm điều kiện của x để biểu thức xác định ? 
b. Tính giá trị của A tại x = 20040 ?
 Bài 15: Cho phân thức 
a. Tìm giá trị của x để phân thức bằng 0?
b. Tìm x để giá trị của phân thức bằng 5/2? 
c. Tìm x nguyên để phân thức có giá trị nguyên? 
B .HÌNH HỌC
Câu 1:Cho hình vuông ABCD,E là điểm trên cạnh DC,F là điểm trên tia đối của tia BC sao cho BF = DE.
a.Chứng minh tam giác AEF vuông cân.
b.Gọi I là trung điểm của EF .Chứng minh I thuộc BD.
c.Lấy điểm K đối xứng với A qua I.Chứng minh tứ giác AEKF là hình vuông.
Câu 2:Cho hình bình hành ABCD có AD = 2AB,.Gọi E và F lần lượt là trung điểm của BC và AD.
a.Chứng minh AEBF.
b.Chứng minh tứ giác BFDC là hình thang cân.
c.Lấy điểm M đối xứng của A qua B.Chứng minh tứ giác BMCD là hình chữ nhật.
d.Chứng minh M,E,D thẳng hàng. 
Câu 3:Cho tam giác ABC vuông tại A có ,kẻ tia Ax song song với BC.Trên Ax lấy điểm D sao cho AD = DC.
a..
Chứng minh tứ giác ABCD là hình thang cân.
c.Gọi E là trung điểm của BC.Chứng minh tứ giác ADEB là hình thoi.
d.Cho AC = 8cm,AB = 5cm.Tính diện tích hình thoi ABED
Câu 4:Cho hình bình hành ABCD .Gọi M , N lần lượt là hình chiếu của Avà C lên BD và P,Q là hình chiếu của B và D lên AC .Chứng minh rằng MPNQ là hình bình hành.
Câu 5:Tính các cạnh của hình chữ nhật biết diện tích hình chữ nhật là 315cm2 và tỉ số các cạnh là 5: 7
Câu 6:Cho ABCD là hình bình hành. Gọi M,N,P,Q là trung điểm của AB,BC ,CD,DA. Gọi K là giao điểm của AC và DM, L là trung điểm của BD và CM 
a. MNPQ là hình gì?Vì sao? b. MDPB là hình gì?Vì sao?
c. CM: AK=KL=LC.
Câu 7:Cho tam giác ABC vuông tại A,đường phân giác AD.Gọi M,N theo thứ tự là chân các đường vuông góc kẻ từ D đến AB,AC. AMDN là hình gì?Vì sao?
Câu 8: Hình thoi ABCD xó chu vi bằng 16cm,đường cao AH bằng 2cm.Tính các góc của hình thoi đó.
Câu 9:Cho tam giác ABC vuông tại A ,D là trung điểm của BC.Gọi M là điểm đối xứng với D qua AB,E là giao điểm của DM và AB.Gọi N là điểm đối xứng với D qua AC,F là giao điểm của DN và AC.
a.Tứ giác AEDF là hình gì ?vì sao?
Câu 10: cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, AC, DC, DB. Tìm điều kiện của tứ giác ABCD để EFGH là:
 a/ Hình chữ nhật b/ Hình thoi c/ hình vuông.
Câu 11:Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.
 a/ Các tứ giác AEFD, AECF là hình gì? Vì sao?
 b/ gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. 
Chứng minh rằng tứ giác EMFN là hình chữ nhật.
 c/ Hình bình hành ABCD nói trên có thêm điều kiện gì thì EMFN là hình vuông?
Câu 12: Cho đoạn thẳng AB = a. Gọi M là một điểm nằm giữa A và B. Vẽ về một phía của AB các hình vuông AMNP, BMLK có tâm đối xứng theo thứ tự là C và D.Gọi I là trung điểm của CD.
 a/ Tính khoảng cách từ I đến AB?
b/ Khi M di chuyển trên đoạn thẳng AB thì điểm I dichuyển trên đường nào?
Câu 13: cho tam giác ABC vuông tại a, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.
a/ Xác định dạng của tứ giác AEMF, AMBH, AMCKb/ chứng minh rằng H đối xứng với K qua A.
c/ Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Câu 14:Cho tam giác nhọn ABC có BC = 12cm, đường cao AH = 8cm. hình vuông EFIK có E thuộc AB, F thuộc AC, I và K thuộc BC.
a/ Tính diện tích tam giác ABC? b/ Tính cạnh của hình vuông? 
c/ Tính diện tích hình thang EFCB.
Câu 15; Cho hình thang cân ABCD(AB//CD) có CA là tia phân giác của góc C, AB = 13cm, CD = 23cm.
a/ Tính chu vi hình thang? b/ tính diện tích hình thang?
Câu 16;Cho tam giác ABC có AB = 8cm; AC = 12cm; BC = 16cm. Gọi I là giao điểm của ba đường phân giác. Khoãng cách từ I đến BC bằng 5cm. Tính diện tích tam giác ABC.
 ( Tổng quát lên: Nếu AB = c; AC = b; BC = a; khoảng cách từ I đến BC = d thì SABC = ?)
Câu 17:Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC, điểm I đối xứng với điểm A qua M.
a/ Chứng minh tứ giác ABIC là hình chữ nhật.
b/ Gọi O, P, K, J lần lượt là trung điểm AB, BI, IC, AC. Tứ giác OPKJ là hình gì? Vì sao?
c/ Kẻ AH vuông góc với BC tại H. Cho AB = 9cm, AC = 12cm. Tính độ dài AH.
Câu 18: Cho tam giác ABC vuông tại A. Có AB = 6cm, AC = 8cm, AH là đường cao (H thuộc BC). Gọi M, I, K lần lượt là trung điểm của AB, BC, AC.
a/ Tính độ dài hai đoạn thẳng BC và MK.
b/ Chứng minh tứ giác MKIB là hình bình hành.
c/ Tứ giác MHIK là hình gì? Vì sao?
Câu 19: Cho tam giác ABC vuông tại A. Có AB = 6cm, AC = 8cm. Gọi I, M, K lần lượt là trung điểm của AB, BC, AC.
a/ Chứng minh tứ giác AIMK là hình chữ nhật và tính diện tích của nó.
b/ Tính độ dài đoạn AM.
c/ Gọi P, J, H, S lần lượt là trung điểm của AI, IM, MK, AK. 
Chứng minh PH vuông góc với JS.
Câu 20: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên cạnh AB, AC.
a/ Chứng minh tứ giác ANDM là hình chữ nhật.
b/ Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao?
c/ Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN.
C. MỘT SỐ ĐỀ THI
ĐỀ SỐ 1
Bài 1: (1,5 điểm)
	1. Làm phép chia : 
	2. Rút gọn biểu thức: 
Bài 2: (2,5 điểm)	1. Phân tích đa thức sau thành nhân tử:
	a) x2 + 3x + 3y + xy 	b) x3 + 5x2 + 6x
 2. Chứng minh đẳng thức: (x + y + z)2 – x2 – y2 – z2 = 2(xy + yz + zx) 
Bài 3: (2 điểm)
	Cho biểu thức: Q = 	
Thu gọn biểu thức Q.
Tìm các giá trị nguyên của x để Q nhận giá trị nguyên.
Bài 4: (4 điểm)
 Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD AB và HEAC ( D AB, 
E AC). Gọi O là giao điểm của AH và DE.
1. Chứng minh AH = DE.
2. Gọi P và Q lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DEQP là 
 hình thang vuông.
Chứng minh O là trực tâm tam giác ABQ.
Chứng minh SABC = 2 SDEQP .
ĐỀ SỐ 2
Bài 1: ( 1,0 điểm)	Thực hiện phép tính:
	1. 	2. 
Bài 2: (2,5 điểm)
	1. Tính giá trị biểu thức : Q = x2 – 10x + 1025 tại x = 1005
	 Phân tích các đa thức sau thành nhân tử:
	2. 	3. 
Bài 3: (1,0 điểm)	Tìm số nguyên tố x thỏa mãn: 
Bài 4: (1,5 điểm)	Cho biểu thức A= ( với x )
Rút gọn biểu thức A.
Chứng tỏ rằng với mọi x thỏa mãn , x -1 phân thức luôn có giá trị âm.	
Bài 5. (4 điểm)
	Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ
	B cắt đường thẳng vuông góc với AC kẻ từ C tại D.
	1. Chứng minh tứ giác BHCD là hình bình hành.
	2. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH.
	2. Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng.
-------HẾT ----
ĐỀ SỐ 3
Bài 1. (2 điểm)	1. Thu gọn biểu thức : 
	2. Tính nhanh giá trị các biểu thức sau: 
	a) A = 852 + 170. 15 + 225	b) B = 202 – 192 + 182 – 172 + . . . . . + 22 – 12
Bài 2: (2điểm) 	1. Thực hiện phép chia sau một cách hợp lí: (x2 – 2x – y2 + 1) : (x – y – 1)
	2. Phân tích đa thức sau thành nhân tử: x2 + x – y2 + y
Bài 3. (2 điểm)
	Cho biểu thức: P = 
	1. Rút gọn biểu thức P.
	2. Tính giá trị của biểu thức P tại x thỏa mãn x2 – 9x + 20 = 0
Bài 4: ( 4 điểm) 
 Cho hình vuông ABCD, M là là trung điểm cạnh AB , P là giao điểm 
 của hai tia CM và DA. 
	 1.Chứng minh tứ giác APBC là hình bình hành và tứ giác BCDP là 
 hình thang vuông.
 2.Chứng minh 2SBCDP = 3 SAPBC .
 3.Gọi N là trung điểm BC,Q là giao điểm của DN và CM.
	 Chứng minh AQ = AB.
ĐỀ SỐ 4
Bài 1: (2 điểm)	1. Thu gọn biểu thức sau: A = 3x(4x – 3) – ( x + 1)2 –(11x2 – 12)
2. Tính nhanh giá trị biểu thức: B = (154 – 1).(154 + 1) – 38 . 58 
Bài 2: (2 điểm)
	1. Tìm x biết : 5(x + 2) – x2 – 2x = 0
2. Cho P = x3 + x2 – 11x + m và Q = x – 2	Tìm m để P chia hết cho Q.
Bài 3: (2điểm) 
	1. Rút gọn biểu thức: 
2. Cho M = 
 a) Rút gọn M
 b) Tìm các giá trị nguyên của x để M nhận giá trị nguyên.
Bài 4. Cho tam giác ABC vuông ở A, đường cao AH.
 1. Chứng minh AH. BC = AB. AC . 
 2.Gọi M là điểm nằm giữa B và C. Kẻ MN AB , MP AC ( N AB, P AC) .
 Tứ giác ANMP là hình gì ? Tại sao?
 3. Tính số đo góc NHP ?
 4. Tìm vị trí điểm M trên BC để NP có độ dài ngắn nhất ?
ĐỀ SỐ 5
A. PHẦN TRẮC NGHIỆM: ( 2điểm)
	Chọn đáp án đúng nhất rồi đánh dấu X vào ô vuông đứng trước câu trả lời:
Câu 1: Biểu thức nào dưới đây là bình phương thiếu của hiệu hai biểu thức x và 2y:
	 x2 + 2xy + 4y2.	 x2 – 2xy + 4y2 .	 x2 – 4xy + 4y2 . x2 + 4xy + 4y2 
Câu 2: Đa thức x2 + 6xy2 + 9y4 chia hết cho đa thức nào dưới đây ? 
	 x + 3y 	 x – 3y 	 x + 3y2 	 x – 3y2
Câu 3: Biểu thức không xác định được giá trị khi x bằng:
	 1	 3	 4	 2 ; – 2 
Câu 4: Cho hai phân thức đối nhau và . Khẳng định nào dưới đây là sai ?
	+ = 0	 – = 0 	 : = – 1	 . = 
Câu 5: Cho tam giác ABC có BC = 6cm . Khi đó độ dài đường trung bình MN bằng:
	 12 cm. 	 6 cm 3cm 	 Không xác định được.
Câu 6: Cho hình thang cân ABCD có hai đáy AD và BC. Khẳng định nào dưới đây là sai ?
	 . . 
Câu 7: Hình nào sau đây có 4 trục đối xứng:
	 hình vuông.	 hình thoi.	 hình chữ nhật.	 hình thang cân.
Câu 8: Tam giác ABC vuông ở A có AB = 6cm, BC = 10cm. Diện tích của tam giác bằng:
	 60 cm2 	 48 cm2 	 30 cm2 	 24 cm2
B. PHẦN BÀI TẬP: (8 điểm)
	Bài 1: (1,5 điểm)
	1. Tính giá trị biểu thức sau bằng cách hợp lí nhất: 1262 – 262
 2. Tính giá trị biểu thức x2 + y2 biết x + y = 5 và x.y = 6
Bài 2: (1,5 điểm)
	Tìm x biết: 
 1. 5( x + 2) + x( x + 2) = 0
	2. (2x + 5)2 + (4x + 10)(3 – x) + x2 – 6x + 9 = 0
Bài 3: (1,5 điểm)
	Cho biểu thức P = ( với x 2 ; x 0)
	1. Rút gọn P.
	2. Tìm các giá trị của x để P có giá trị bé nhất. Tìm giá trị bé nhất đó.
Bài 4: (3,5 điểm)
 Cho tam giác ABC vuông tại A có ( AB < AC). Phân giác góc BAC cắt 
 đường trung trực cạnh BC ở điểm D. Kẻ DH vuông góc AB và DK vuông góc AC.
	1. Tứ giác AHDK là hình gì ? Chứng minh.
	2. Chứng minh BH = CK.
	3. Giả sử AC = 8cm và BC = 10 cm. Gọi M là trung điểm BC. Tính diện tích 
	 của tứ giác BHDM. 
ĐỀ SỐ 6
I/ Phần trắc nghiệm. (4 điểm)
 Câu 1: Kết quả của phép chia 24x4y3z : 8x2y3 là:
A. 3x2y	B. 3x2z	C. 3x2yz	D. 3xz
 Câu 2: Phân thức rút gọn có kết quả là :
A. 	B. 	C. 	D. Cả A, B, C đều đúng.
 Câu3: Giá trị của biểu thức M = x2 + 4x + 4 tại x = 12 là:
A. 196	B. 144	C. 100	D. 102
 Câu 4. Mẫu thức chung của hai phân thức và là ?
A. (x - 1)2	B. x + 1	C. x2 - 1	D. x - 1
 Câu 5: Tứ giác có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường là:
A. Hình thang cân.	B. Hình bình hành.
C. Hình chữ nhật.	D. Hình thoi.
 Câu 6: Tứ giác có các góc đối bằng nhau là hình:
A. Hình bình hành.	B. Hình chữ nhật.
C. Hình thoi.	D. Cả A, B, C đều đúng.
 Câu 7: Hình vuông có bao nhiêu trục đối xứng ?
A. 2	B. 4	C. 6	D. Cả A, B, C đều sai.
 Câu 8: Hình nào có tâm đối xứng là giao điểm của hai đường chéo ?
A. Hình bình hành.	B. Tam giác đều.	
C. Hình thang.	D. Hình thang cân.
II/ Phần tự luận.(6 điểm)
 Câu 1: (0,75 điểm). Phân tích đa thức sau thành nhân tử: 3a - 3b + a2 - ab
 Câu 2: (0,75 điểm). Rút gọn phân thức sau: 	
 Câu 3: (1,5 điểm). Thực hiện phép tính: 
a) 	b) 
 Câu 4: (3 điểm).
Cho hình bình hành ABCD có BC = 2AB và góc B = 600. Gọi E, F theo thứ tự là trung điểm của BC và AD.
Chứng minh tứ giác ECDF là hình thoi.
Tính số đo của góc AED.
ĐỀ SỐ 7
Bài 1: Thực hiện phép tính
a/ b/ 
Bài 2: Tìm x biết
a/ x( x2 – 4 ) = 0 b/ ( x + 2)2 – ( x – 2)(x + 2) = 0
Bài 3: Phân tích đa thức thành nhân tử
a/ x3 – 2x2 + x – xy2 b/ 4x2 + 16x + 16
Bài 4: Cho biểu thức 
 A = 
a/ Tìm ĐKXĐ của A b/ Rút gọn A .
c/ Tính giá trị của A khi x = 5 và y = 6
Bài 5: Cho hình bình hành ABCD có AB = 8 cm,AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.
a/ Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì?
c/ Ch

Tài liệu đính kèm:

  • docDe_cuong_on_tap_toan_8_HK_I_NH_1617_Chinh_graib.doc