Đề thi học sinh giỏi môn Toán Lớp 9 - Năm học 2017-2018 - Phòng GD & ĐT Tiền Hải

doc 1 trang Người đăng duyenlinhkn2 Ngày đăng 11/09/2024 Lượt xem 114Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi học sinh giỏi môn Toán Lớp 9 - Năm học 2017-2018 - Phòng GD & ĐT Tiền Hải", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề thi học sinh giỏi môn Toán Lớp 9 - Năm học 2017-2018 - Phòng GD & ĐT Tiền Hải
 UBND HUYỆN TIỀN HẢI
 PHÒNG GIÁO DỤC VÀ ĐÀO TẠO 
ĐỀ THI HỌC SINH GIỎI LỚP 9 THCS
NĂM HỌC 2017-2018
Môn : Toán
Bài 1 (4,0 điểm) Tính giá trị của các biểu thức sau:
A = 
B = 
( với a,b,c là các số dương và a+b+c=1)
Bài 2 (3,0 điểm)
Tìm các số a,b sao cho f(x)= x4+ax3+bx-1 chia hết cho đa thức x2-3x+2
Chứng minh rằng: B=4x(x+y)(x+y+z)(x+z) + y2z2 là một số chính phương với x,y,z là những số nguyên
Bài 3 (4,0 điểm)
Tìm m để phương trình vô nghiệm
Giải phương trình 4 = x2 - 5x + 14
Tìm nghiệm nguyên dương của phương trình: 
Bài 4 (7,0 điểm)
Cho tam giác ABC vuông tại A(AB<AC). Kẻ AH vuông góc với BC tại H. Gọi D và E lần lượt là hình chiếu của H lên AB và AC.
Biết AB=6cm, HC=6,4cm. Tính BC và AC
Chứng minh DE3=BC.BD.CE
Đường thẳng kẻ qua B vuông góc với BC cắt HD tại M, đường thẳng kẻ qua C vuông góc với BC cắt HE tại N. Chứng minh M,A,N thẳng hàng
Chứng minh BN,CM,DE đồng quy.
Bài 5 (2,0 điểm)
Cho đa thức f(x) = x4+ax3+bx2+cx+d ( với a,b,c là các số thực)
Biết f(1)=10, f(2)=20, f(3)=30. Tính giá trị của biểu thức f(8)+f(-4)

Tài liệu đính kèm:

  • docde_thi_hoc_sinh_gioi_mon_toan_lop_9_nam_hoc_2017_2018_phong.doc