1 §Ò 1 C©u 1. Víi mäi sè tù nhiªn n ≥ 2 h·y so s¸nh: a. A= 2222 1 .... 4 1 3 1 2 1 n ++++ víi 1 . b. B = ( )2222 2 1 ... 6 1 4 1 2 1 n ++++ víi 1/2 C©u 2: T×m phÇn nguyªn cña α , víi 143 1 .... 3 4 2 32 + +++++= n n n α C©u 3: T×m tØ lÖ 3 c¹nh cña mét tam gi¸c, biÕt r»ng céng lÇn l−ît ®é dµi hai ®−êng cao cña tam gi¸c ®ã th× tØ lÖ c¸c kÕt qu¶ lµ 5: 7 : 8. C©u 4: Cho gãc xoy , trªn hai c¹nh ox vµ oy lÇn l−ît lÊy c¸c ®iÓm A vµ B ®Ó cho AB cã ®é dµi nhá nhÊt. C©u 5: Chøng minh r»ng nÕu a, b, c vµ cba ++ lµ c¸c sè h÷u tØ. ---------------------------------------------------------- §Ò 2: Môn: Toán 7 Bài 1: (3 điểm): Tính 1 1 2 2 318 (0,06 : 7 3 .0,38) : 19 2 .4 6 2 5 3 4 − + − Bài 2: (4 điểm): Cho a c c b = chứng minh rằng: a) 2 2 2 2 a c a b c b + = + b) 2 2 2 2 b a b a a c a − − = + Bài 3:(4 điểm) Tìm x biết: a) 1 4 2 5 x + − = − b) 15 3 6 1 12 7 5 2 x x− + = − Bài 4: (3 điểm) Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây Bài 5: (4 điểm) Cho tam giác ABC cân tại A có 0A 20= , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: a) Tia AD là phân giác của góc BAC b) AM = BC 2 Bài 6: (2 điểm): Tìm ,x y ∈ℕ biết: 2 225 8( 2009)y x− = − §Ò 3 Bài 1:(4 điểm) a) Thực hiện phép tính: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 32 4 5 2 .3 4 .9 5 .7 25 .49A 125.7 5 .142 .3 8 .3 − − = − ++ b) Chứng minh rằng : Với mọi số nguyên dương n thì : 2 23 2 3 2n n n n+ +− + − chia hết cho 10 Bài 2:(4 điểm) Tìm x biết: a. ( )1 4 23,23 5 5x − + = − + b. ( ) ( )1 117 7 0x xx x+ +− − − = Bài 3: (4 điểm) a) Số A được chia thành 3 số tỉ lệ theo 2 3 1: : 5 4 6 . Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. b) Cho a c c b = . Chứng minh rằng: 2 2 2 2 a c a b c b + = + Bài 4: (4 điểm) Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ EH BC⊥ ( )H BC∈ . Biết HBE = 50o ; MEB =25o . Tính HEM và BME Bài 5: (4 điểm) Cho tam giác ABC cân tại A có 0A 20= , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: c) Tia AD là phân giác của góc BAC d) AM=BC §Ò 4 Bµi 1: (2 ®iÓm) 3 Cho A = 2-5+8-11+14-17++98-101 a, ViÕt d¹ng tæng qu¸t d¹ng thø n cña A b, TÝnh A Bµi 2: ( 3 ®iÓm) T×m x,y,z trong c¸c trêng hîp sau: a, 2x = 3y =5z vµ 2x y− =5 b, 5x = 2y, 2x = 3z vµ xy = 90. c, 1 2 3 1y z x z x y x y z x y z + + + + + − = = = + + Bµi 3: ( 1 ®iÓm) 1. Cho 3 8 91 2 2 3 4 9 1 ... a a aa a a a a a a = = = = = vµ (a1+a2++a9 ≠0) Chøng minh: a1 = a2 = a3== a9 2. Cho tØ lÖ thøc: a b c a b c a b c a b c + + − + = + − − − vµ b ≠ 0 Chøng minh c = 0 Bµi 4: ( 2 ®iÓm) Cho 5 sè nguyªn a1, a2, a3, a4, a5. Gäi b1, b2, b3, b4, b5 lµ ho¸n vÞ cña 5 sè ®· cho. Chøng minh r»ng tÝch (a1-b1).(a2-b2).(a3-b3).(a4-b4).(a5-b5) ⋮ 2 Bµi 5: ( 2 ®iÓm) Cho ®o¹n th¼ng AB vµ O lµ trung ®iÓm cña ®o¹n th¼ng ®ã. Trªn hai nöa mÆt ph¼ng ®èi nhau qua AB, kÎ hai tia Ax vµ By song song víi nhau. Trªn tia Ax lÊy hai ®iÓm D vµ F sao cho AC = BD vµ AE = BF. Chøng minh r»ng : ED = CF. === HÕt=== §Ò 5 Bµi 1: (3 ®iÓm) 1. Thùc hiÖn phÐp tÝnh: 14,5 : 47,375 26 18.0,75 .2, 4 : 0,88 3 2 517,81:1,37 23 :1 3 6 − − − 4 2. T×m c¸c gi¸ trÞ cña x vµ y tho¶ m·n: ( )2007 20082 27 3 10 0x y− + + = 3. T×m c¸c sè a, b sao cho 2007ab lµ b×nh ph−¬ng cña sè tù nhiªn. Bµi 2: ( 2 ®iÓm) 1. T×m x,y,z biÕt: 1 2 3 2 3 4 x y z− − − = = vµ x-2y+3z = -10 2. Cho bèn sè a,b,c,d kh¸c 0 vµ tho¶ m·n: b2 = ac; c2 = bd; b3 + c3 + d3 ≠ 0 Chøng minh r»ng: 3 3 3 3 3 3 a b c a b c d d + + = + + Bµi 3: ( 2 ®iÓm) 1. Chøng minh r»ng: 1 1 1 1... 10 1 2 3 100 + + + + > 2. T×m x,y ®Ó C = -18- 2 6 3 9x y− − + ®¹t gi¸ trÞ lín nhÊt. Bµi 4: ( 3 ®iÓm) Cho tam gi¸c ABC vu«ng c©n t¹i A cã trung tuyÕn AM. E lµ ®iÓm thuéc c¹nh BC. KÎ BH, CK vu«ng gãc víi AE (H, K thuéc AE). 1, Chøng minh: BH = AK 2, Cho biÕt MHK lµ tam gi¸c g×? T¹i sao? === HÕt=== §Ò sè 6 C©u 1: T×m c¸c sè a,b,c biÕt r»ng: ab =c ;bc= 4a; ac=9b C©u 2: T×m sè nguyªn x tho¶ m·n: a,5x-3 4 c, 4- x +2x =3 C©u3: T×m gi¸ trÞ nhá nhÊt cña biÓu thøc: A =x +8 -x C©u 4: BiÕt r»ng :12+22+33+...+102= 385. TÝnh tæng : S= 22+ 42+...+202 C©u 5 : việ 5 Cho tam gi¸c ABC ,trung tuyÕn AM .Gäi I lµ trung ®iÓm cña ®o¹n th¼ng AM, BI c¾t c¹nh AC t¹i D. a. Chøng minh AC=3 AD b. Chøng minh ID =1/4BD -------------------------------------- HÕt ----------------------------------------- §Ò sè 7 Thêi gian lµm bµi: 120 phót C©u 1 . ( 2®) Cho: d c c b b a == . Chøng minh: d a dcb cba = ++ ++ 3 . C©u 2. (1®). T×m A biÕt r»ng: A = ac b ba c cb a + = + = + . C©u 3. (2®). T×m Zx ∈ ®Ó A∈ Z vµ t×m gi¸ trÞ ®ã. a). A = 2 3 − + x x . b). A = 3 21 + − x x . C©u 4. (2®). T×m x, biÕt: a) 3−x = 5 . b). ( x+ 2) 2 = 81. c). 5 x + 5 x+ 2 = 650 C©u 5. (3®). Cho ABC vu«ng c©n t¹i A, trung tuyÕn AM . E ∈ BC, BH⊥ AE, CK ⊥ AE, (H,K ∈ AE). Chøng minh MHK vu«ng c©n. -------------------------------- HÕt ----------------------------------- §Ò sè 8 Thêi gian lµm bµi : 120 phót. C©u 1 : ( 3 ®iÓm). 1. Ba ®−êng cao cña tam gi¸c ABC cã ®é dµi lµ 4,12 ,a . BiÕt r»ng a lµ mét sè tù nhiªn. T×m a ? 2. Chøng minh r»ng tõ tØ lÖ thøc d c b a = ( a,b,c ,d≠ 0, a≠b, c≠d) ta suy ra ®−îc c¸c tØ lÖ thøc: a) dc c ba a − = − . b) d dc b ba + = + . C©u 2: ( 1 ®iÓm). T×m sè nguyªn x sao cho: ( x2 –1)( x2 –4)( x2 –7)(x2 –10) < 0. C©u 3: (2 ®iÓm). T×m gi¸ trÞ nhá nhÊt cña: A = | x-a| + | x-b| + |x-c| + | x-d| víi a<b<c<d. C©u 4: ( 2 ®iÓm). Cho h×nh vÏ. a, BiÕt Ax // Cy. so s¸nh gãc ABC víi gãc A+ gãc C. b, gãc ABC = gãc A + gãc C. Chøng minh Ax // Cy. A B x 6 C©u 5: (2 ®iÓm) Tõ ®iÓm O tïy ý trong tam gi¸c ABC, kÎ OM, ON , OP lÇn l−ît vu«ng gãc víi c¸c c¹nh BC, CA, Ab. Chøng minh r»ng: AN2 + BP2 + CM2 = AP 2 + BM2 + CN2 ---------------------------- HÕt -------------------------------- §Ò sè 9 Thêi gian lµm bµi: 120 phót C©u 1(2®): a) TÝnh: A = 1 + 3 4 5 100 3 4 5 100 ... 2 2 2 2 + + + + b) T×m n ∈Z sao cho : 2n - 3 ⋮ n + 1 C©u 2 (2®): a) T×m x biÕt: 3x - 2 1x + = 2 b) T×m x, y, z biÕt: 3(x-1) = 2(y-2), 4(y-2) = 3(z-3) vµ 2x+3y-z = 50. C©u 3(2®): Ba ph©n sè cã tæng b»ng 213 70 , c¸c tö cña chóng tØ lÖ víi 3; 4; 5, c¸c mÉu cña chóng tØ lÖ víi 5; 1; 2. T×m ba ph©n sè ®ã. C©u 4(3®): Cho tam gi¸c ABC c©n ®Ønh A. Trªn c¹nh AB lÊy ®iÓm D, trªn tia ®èi cña tia CA lÊy ®iÓm E sao cho BD = CE. Gäi I lµ trung ®iÓm cña DE. Chøng minh ba ®iÓm B, I, C th¼ng hµng. C©u 5(1®): T×m x, y thuéc Z biÕt: 2x + 1 7 = 1 y ---------------------------------------------------HÕt------------------------------------------ §Ò sè 10 Thêi gian lµm bµi: 120’. C©u 1: TÝnh : a) A = 100.99 1 .... 4.3 1 3.2 1 2.1 1 ++++ . b) B = 1+ )20...321( 20 1 ....)4321( 4 1)321( 3 1)21( 2 1 ++++++++++++++ C©u 2: a) So s¸nh: 12617 ++ vµ 99 . b) Chøng minh r»ng: 10 100 1 .... 3 1 2 1 1 1 >++++ . C©u 3: T×m sè cã 3 ch÷ sè biÕt r»ng sè ®ã lµ béi cña 18 vµ c¸c ch÷ sè cña nã tØ lÖ theo 1:2:3 C©u 4 C y 7 Cho tam gi¸c ABC cã gãc B vµ gãc C nhá h¬n 900 . VÏ ra phÝa ngoµi tam gi¸c Êy c¸c tam gi¸c vu«ng c©n ABD vµ ACE ( trong ®ã gãc ABD vµ gãc ACE ®Òu b»ng 900 ), vÏ DI vµ EK cïng vu«ng gãc víi ®−êng th¼ng BC. Chøng minh r»ng: a. BI=CK; EK = HC; b. BC = DI + EK. C©u 5: T×m gi¸ trÞ nhá nhÊt cña biÓu thøc : A = 12001 −+− xx ------------------------------------------ hÕt --------------------------------------------- §Ò sè 11 Thêi gian lµm bµi: 120 phót C©u 1: (1,5 ®) T×m x biÕt: a, 327 2+x + 326 3+x + 325 4+x + 324 5+x + 5 349+x =0 b, 35 −x 7≥ C©u2:(3 ®iÓm) a, TÝnh tæng: 2007210 7 1 ........ 7 1 7 1 7 1 −++ −+ −+ −=S b, CMR: 1 !100 99 ........ !4 3 !3 2 !2 1 <++++ c, Chøng minh r»ng mäi sè nguyªn d−¬ng n th×: 3n+2 – 2n+2 +3n – 2n chia hÕt cho 10 C©u3: (2 ®iÓm) §é dµi ba c¹nh cña mét tam gi¸c tØ lÖ víi 2;3;4. Hái ba chiÒu cao t−¬ng øng ba c¹nh ®ã tØ lÖ víi sè nµo? C©u 4: (2,5®iÓm) Cho tam gi¸c ABC cã gãc 060=B hai ®−êng ph©n gi¸c AP vµ CQ cña tam gi¸c c¾t nhau t¹i I. a, TÝnh gãc AIC b, CM : IP = IQ C©u5: (1 ®iÓm) Cho 3)1(2 1 2 +− = n B . T×m sè nguyªn n ®Ó B cã gi¸ trÞ lín nhÊt. ---------------------------------- hÕt ---------------------------------- §Ò sè 12 Thêi gian : 120’ C©u 1 : (3®) T×m sè h÷u tØ x, biÕt : a) ( )51−x = - 243 . b) 15 2 14 2 13 2 12 2 11 2 + + + = + + + + + xxxxx c) x - 2 x = 0 (x 0≥ ) C©u 2 : (3®) 8 a, T×m sè nguyªn x vµ y biÕt : 8 1 4 5 =+ y x b, T×m sè nguyªn x ®Ó A cã gi¸ trÞ lµ 1 sè nguyªn biÕt : A = 3 1 − + x x (x 0≥ ) C©u 3 : (1®) T×m x biÕt : 2. 35 −x - 2x = 14 C©u 4 : (3®) a, Cho ∆ ABC cã c¸c gãc A, B , C tØ lÖ víi 7; 5; 3 . C¸c gãc ngoµi t−¬ng øng tØ lÖ víi c¸c sè nµo . b, Cho ∆ ABC c©n t¹i A vµ ¢ < 900 . KÎ BD vu«ng gãc víi AC . Trªn c¹nh AB lÊy ®iÓm E sao cho : AE = AD . Chøng minh : 1) DE // BC 2) CE vu«ng gãc víi AB . -----------------------------------HÕt-------------------------------- §Ò sè 13 Thêi gian lµm bµi: 120 phót Bµi1( 3 ®iÓm) a, TÝnh: A = 1 11 60).25,091 5( )75,1 3 10( 11 12) 7 176 3 126( 3 110 −− −−− b, TÝnh nhanh: (18.123 + 9.436.2 + 3.5310.6) : (1 + 4 +7 ++ 100 – 410) Bµi 2: ( 2®iÓm). T×m 3 sè nguyªn d−¬ng sao cho tæng c¸c nghÞch ®¶o cña chóng b»ng 2. Bµi 3: (2 ®iÓm). CÇn bao nhiªu ch÷ sè ®Ó ®¸nh sè trang mét cuèn s¸ch dµy 234 trang. Bµi 4: ( 3 ®iÓm) Cho ∆ ABC vu«ng t¹i B, ®−êng cao BE T×m sè ®o c¸c gãc nhän cña tam gi¸c , biÕt EC – EA = AB. -------------------------------------------- hÕt ------------------------------------------- §Ò sè 14 Thêi gian lµm bµi 120 phót Bµi 1(2 ®iÓm). Cho 5 2 .A x x= + + − a.ViÕt biÓu thøc A d−íi d¹ng kh«ng cã dÊu gi¸ trÞ tuyÖt ®èi. b.T×m gi¸ trÞ nhá nhÊt cña A. Bµi 2 ( 2 ®iÓm) a.Chøng minh r»ng : 2 2 2 2 1 1 1 1 1 1 ....... 6 5 6 7 100 4 < + + + + < . b.T×m sè nguyªn a ®Ó : 2 9 5 17 3 3 3 3 a a a a a a + + + − + + + lµ sè nguyªn. 9 Bµi 3(2,5 ®iÓm). T×m n lµ sè tù nhiªn ®Ó : ( ) ( )5 6 6 .A n n n= + + ⋮ Bµi 4(2 ®iÓm) Cho gãc xOy cè ®Þnh. Trªn tia Ox lÊy M, Oy lÊy N sao cho OM + ON = m kh«ng ®æi. Chøng minh : §−êng trung trùc cña MN ®i qua mét ®iÓm cè ®Þnh. Bµi 5(1,5 ®iÓm). T×m ®a thøc bËc hai sao cho : ( ) ( )1 .f x f x x− − = . ¸p dông tÝnh tæng : S = 1 + 2 + 3 + + n. ----------------------------- HÕt ------------------------- §Ò sè 15 Thêi gian lµm bµi: 120 phót C©u 1: (2®) Rót gän A= 2 2 8 20 x x x x − + − C©u 2 (2®) Ba líp 7A,7B,7C cã 94 häc sinh tham gia trång c©y. Mçi häc sinh líp 7A trång ®−îc 3 c©y, Mçi häc sinh líp 7B trång ®−îc 4 c©y, Mçi häc sinh líp 7C trång ®−îc 5 c©y,. Hái mçi líp cã bao nhiªu häc sinh. BiÕt r»ng sè c©y mçi líp trång ®−îc ®Òu nh− nhau. C©u 3: (1,5®) Chøng minh r»ng 200610 53 9 + lµ mét sè tù nhiªn. C©u 4 : (3®) Cho gãc xAy = 600 vÏ tia ph©n gi¸c Az cña gãc ®ã . Tõ mét ®iÓm B trªn Ax vÏ ®−êng th¼ng song song víi víi Ay c¾t Az t¹i C. vÏ Bh ⊥ Ay,CM ⊥Ay, BK ⊥ AC. Chøng minh r»ng: a, K lµ trung ®iÓm cña AC. b, BH = 2 AC c, ∆KMC ®Òu C©u 5 (1,5 ®) Trong mét kú thi häc sinh giái cÊp HuyÖn, bèn b¹n Nam, B¾c, T©y, §«ng ®o¹t 4 gi¶i 1,2,3,4 . BiÕt r»ng mçi c©u trong 3 c©u d−íi ®©y ®óng mét nöa vµ sai 1 nöa: a, T©y ®¹t gi¶i 1, B¾c ®¹t gi¶i 2. b, T©y ®¹t gi¶i 2, §«ng ®¹t gi¶i 3. c, Nam ®¹t gi¶i 2, §«ng ®¹t gi¶i 4. Em h·y x¸c ®Þnh thø tù ®óng cña gi¶i cho c¸c b¹n. --------------------------------- HÕt -------------------------------------- §Ò sè 16: Thêi gian lµm bµi 120 phót C©u 1: (2®) T×m x, biÕt: a) 723 =−− xx b) 532 >−x c) 713 ≤−x d) 73253 =++− xx C©u 2: (2®) a) TÝnh tæng S = 1+52+ 54+...+ 5200 10 b) So s¸nh 230 + 330 + 430 vµ 3.2410 C©u 3: (2®) Cho tam gi¸c ABC cã gãc B b»ng 600. Hai tia ph©n gi¸c AM vµ CN cña tam gi¸c ABC c¾t nhau t¹i I. a) TÝnh gãc AIC b) Chøng minh IM = IN C©u 4: (3®) Cho M,N lÇn l−ît lµ trung ®iÓm cña c¸c c¹nh AB vµ Ac cña tam gi¸c ABC. C¸c ®−êng ph©n gi¸c vµ ph©n gi¸c ngoµi cña tam gi¸c kÎ tõ B c¾t ®−êng th¼ng MN lÇn l−ît t¹i D vµ E c¸c tia AD vµ AE c¾t ®−êng th¼ng BC theo thø tù t¹i P vµ Q. Chøng minh: a) BD ;; AQBEAP ⊥⊥ b) B lµ trung ®iÓm cña PQ c) AB = DE C©u 5: (1®) Víi gi¸ trÞ nguyªn nµo cña x th× biÓu thøc A= x x − − 4 14 Cã gi¸ trÞ lín nhÊt? T×m gi¸ trÞ ®ã. -------------------------------------- HÕt ---------------------------------------- §Ò sè 17: C©u 1: ( 1,5 ®iÓm) T×m x, biÕt: a. 4 3x + - x = 15. b. 3 2x − - x > 1. c. 2 3x + ≤ 5. C©u2: ( 2 ®iÓm) a. TÝnh tæng: A= (- 7) + (-7)2 + + (- 7)2006 + (- 7)2007. Chøng minh r»ng: A chia hÕt cho 43. b. Chøng minh r»ng ®iÒu kiÖn cÇn vµ ®ñ®Ó m2 + m.n + n2 chia hÕt cho 9 lµ: m, n chia hÕt cho 3. C©u 3: ( 23,5 ®iÓm) §é dµi c¸c c¹nh cña mét tam gi¸c tØ lÖ víi nhau nh− thÕ nµo,biÕt nÕu céng lÇn l−ît ®é dµi tõng hai ®−êng cao cña tam gi¸c ®ã th× c¸c tæng nµy tû lÖ theo 3:4:5. C©u 4: ( 3 ®iÓm ) Cho tam gi¸c ABC c©n t¹i A. D lµ mét ®iÓm n»m trong tam gi¸c, biÕt ADB > ADC . Chøng minh r»ng: DB < DC. C©u 5: ( 1 ®iÓm ) T×m GTLN cña biÓu thøc: A = 1004x − - 1003x + . -------------------------------------- HÕt --------------------------------- §Ò sè 18 C©u 1 (2 ®iÓm): T×m x, biÕt : a. 3x 2− +5x = 4x-10 b. 3+ 2x 5 + > 13 C©u 2: (3 ®iÓm ) a. T×m mét sè cã 3 ch÷ sè biÕt r»ng sè ®ã chia hÕt cho 18 vµ c¸c ch÷ sè cña nã tû lÖ víi 1, 2, 3. b. Chøng minh r»ng: Tæng A=7 +72+73+74+...+74n chia hÕt cho 400 (n∈N). C©u 3 : (1®iÓm )cho h×nh vÏ , biÕt α + β + γ = 1800 chøng minh Ax// By. 11 A α x C β γ B y C©u 4 (3 ®iÓm ) Cho tam gi¸c c©n ABC, cã ABC =1000. KÎ ph©n gi¸c trong cña gãc CAB c¾t AB t¹i D. Chøng minh r»ng: AD + DC =AB C©u 5 (1 ®iÓm ) TÝnh tæng. S = (-3)0 + (-3)1+ (-3)2 + .....+ (-3)2004. §Ò sè 19 Thêi gian lµm bµi: 120 phó Bµi 1: (2,5®) Thùc hiÖn phÐp tÝnh sau mét c¸ch hîp lÝ: 1 1 1 1 1 1 1 1 1 90 72 56 42 30 20 12 6 2 − − − − − − − − − Bµi 2: (2,5®) TÝnh gi¸ trÞ nhá nhÊt cña biÓu thøc: A = xx −+− 52 Bµi 3: (4®) Cho tam gi¸c ABC. Gäi H, G,O lÇn l−ît lµ trùc t©m , träng t©m vµ giao ®iÓm cña 3 ®−êng trung trùc trong tam gi¸c. Chøng minh r»ng: a. AH b»ng 2 lÇn kho¶ng c¸ch tõ O ®Õn BC b. Ba ®iÓm H,G,O th¼ng hµng vµ GH = 2 GO Bµi 4: (1 ®) T×m tæng c¸c hÖ sè cña ®a thøc nhËn ®−îc sau khi bá dÊu ngoÆc trong biÓu thøc (3-4x+x2)2006.(3+ 4x + x2)2007. ------------------------------------------- HÕt ------------------------------------------ §Ò 20 Thêi gian lµm bµi: 120 phót C©u 1(3®): Chøng minh r»ng A = 22011969 + 11969220 + 69220119 chia hÕt cho 102 C©u 2(3®): T×m x, biÕt: a. x x 2 3+ + = ; b. 3x 5 x 2− = + C©u 3(3®): Cho tam gi¸c ABC. Gäi M, N, P theo thø tù lµ trung ®iÓm cña BC, CA, AB. C¸c ®−êng trung trùc cña tam gi¸c gÆp nhau tai 0. C¸c ®−êng cao AD, BE, CF gÆp nhau t¹i H. Gäi I, K, R theo thø tù lµ trung ®iÓm cña HA, HB, HC. a) C/m H0 vµ IM c¾t nhau t¹i Q lµ trung ®iÓm cña mçi ®o¹n. b) C/m QI = QM = QD = 0A/2 c) H·y suy ra c¸c kÕt qu¶ t−¬ng tù nh− kÕt qu¶ ë c©u b. C©u 4(1®): T×m gi¸ trÞ cña x ®Ó biÓu thøc A = 10 - 3|x-5| ®¹t gi¸ trÞ lín nhÊt. --------------------------------------------- HÕt --------------------------------------------- 12 §Ò 21: Bµi 1: (2®) Cho biÓu thøc A = 3 5 + − x x a) TÝnh gi¸ trÞ cña A t¹i x = 4 1 b) T×m gi¸ trÞ cña x ®Ó A = - 1 c) T×m gi¸ trÞ nguyªn cña x ®Ó A nhËn gi¸ trÞ nguyªn. Bµi 2. (3®) a) T×m x biÕt: 17 −=− xx b) TÝnh tæng M = 1 + (- 2) + (- 2)2 + +(- 2)2006 c) Cho ®a thøc: f(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – x4 + 1 – 4x3. Chøng tá r»ng ®a thøc trªn kh«ng cã nghiÖm Bµi 3.(1®Hái tam gi¸c ABC lµ tam gi¸c g× biÕt r»ng c¸c gãc cña tam gi¸c tØ lÖ víi 1, 2, 3. Bµi 4.(3®) Cho tam gi¸c ABC cã gãc B b»ng 600. Hai tia ph©n gi¸c AM vµ CN cña tam gi¸c ABC c¾t nhau t¹i I. a) TÝnh gãc AIC b) Chøng minh IM = IN Bµi 5. (1®) Cho biÓu thøc A = x x − − 6 2006 . T×m gi¸ trÞ nguyªn cña x ®Ó A ®¹t gi¸ trÞ lín nhÊt. T×m gi¸ trÞ lín nhÊt ®ã. ---------------------------------------- HÕt -------------------------------------- §Ò 22 C©u 1: 1.TÝnh: a. 2015 2 1 4 1 . b. 3025 9 1 3 1 : 2. Rót gän: A = 20.63.2 6.29.4 8810 945 + − 3. BiÓu diÔn sè thËp ph©n d−íi d¹ng ph©n sè vµ ng−îc l¹i: 13 a. 33 7 b. 22 7 c. 0, (21) d. 0,5(16) C©u 2: Trong mét ®ît lao ®éng, ba khèi 7, 8, 9 chuyªn chë ®−îc 912 m3 ®Êt. Trung b×nh mçi häc sinh khèi 7, 8, 9 theo thø tù lµm ®−îc 1,2 ; 1,4 ; 1,6 m3 ®Êt. Sè häc sinh khèi 7, 8 tØ lÖ víi 1 vµ 3. Khèi 8 vµ 9 tØ lÖ víi 4 vµ 5. TÝnh sè häc sinh mçi khèi. C©u 3: a.T×m gi¸ trÞ lín nhÊt cña biÓu thøc: A = 4)2( 3 2 ++x b.T×m gi¸ trÞ nhá nhÊt cña biÓu thøc: B = (x+1)2 + (y + 3)2 + 1 C©u 4: Cho tam gi¸c ABC c©n (CA = CB) vµ ∠C = 800. Trong tam gi¸c sao cho 0MBA 30 = vµ 010MAB = .TÝnh MAC . C©u 5: Chøng minh r»ng : nÕu (a,b) = 1 th× (a2,a+b) = 1. ------------------------------------- HÕt ------------------------------------- §Ò23 Thêi gian: 120 phót. C©u I: (2®) 1) Cho 6 5 4 3 2 1 − = + = − cba vµ 5a - 3b - 4 c = 46 . X¸c ®Þnh a, b, c 2) Cho tØ lÖ thøc : d c b a = . Chøng minh : cdd dcdc abb baba 32 532 32 532 2 22 2 22 + +− = + +− . Víi ®iÒu kiÖn mÉu thøc x¸c ®Þnh. C©u II : TÝnh : (2®) 1) A = 99.97 1 .... 7.5 1 5.3 1 +++ 2) B = 515032 3 1 3 1 ..... 3 1 3 1 3 1 −++−+− C©u III : (1,5 ®) §æi thµnh ph©n sè c¸c sè thËp ph©n sau : a. 0,2(3) ; b. 1,12(32). C©u IV : (1.5®) X¸c ®Þnh c¸c ®a thøc bËc 3 biÕt : P(0) = 10; P(1) = 12; P(2) = 4 ; p(3) = 1 C©u V : (3®) Cho tam gi¸c ABC cã 3 gãc nhän. Dùng ra phÝa ngoµi 2 tam gi¸c vu«ng c©n ®Ønh A lµ ABD vµ ACE . Gäi M;N;P lÇn l−ît lµ trung ®iÓm cña BC; BD;CE . a. Chøng minh : BE = CD vµ BE ⊥ víi CD b. Chøng minh tam gi¸c MNP vu«ng c©n ---------------------------------------------- HÕt ----------------------------------------------- 14 §Ò 24 Thêi gian lµm bµi: 120 phót Bµi 1 (1,5®): Thùc hiÖn phÐp tÝnh: a) A = 3 3 0,375 0,3 1,5 1 0,7511 12 5 5 5 0,265 0,5 2,5 1,25 11 12 3 − + + + − + − + − − + − b) B = 1 + 22 + 24 + ... + 2100 Bµi 2 (1,5®): a) So s¸nh: 230 + 330 + 430 vµ 3.2410 b) So s¸nh: 4 + 33 vµ 29 + 14 Bµi 3 (2®): Ba m¸y xay xay ®−îc 359 tÊn thãc. Sè ngµy lµm viÖc cña c¸c m¸y tØ lÖ víi 3:4:5, sè giê lµm viÖc cña c¸c m¸y tØ lÖ víi 6, 7, 8, c«ng suÊt c¸c m¸y tØ lÖ nghÞc víi 5,4,3. Hái mçi m¸y xay ®−îc bao nhiªu tÊn thãc. Bµi 4 (1®): T×m x, y biÕt: a) 3 4x − ≤ 3 b) 1 1 1 1... 2 1.2 2.3 99.100 2 x + + + − = Bµi 5 ( 3®): Cho ∆ ABC cã c¸c gãc nhá h¬n 1200. VÏ ë phÝa ngoµi tam gi¸c ABC c¸c tam gi¸c ®Òu ABD, ACE. Gäi M lµ giao ®iÓm cña DC vµ BE. Chøng minh r»ng: a) 0120BMC = b) 0120AMB = Bµi 6 (1®): Cho hµm sè f(x) x¸c ®Þnh víi mäi x thuéc R. BiÕt r»ng víi mäi x ta ®Òu cã: 21( ) 3. ( )f x f x x + = . TÝnh f(2). --------------------
Tài liệu đính kèm: