Tuyển tập đề thi Olympic tToán sinh viên quốc tế

pdf 166 trang Người đăng nguyenlan45 Lượt xem 819Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Tuyển tập đề thi Olympic tToán sinh viên quốc tế", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tuyển tập đề thi Olympic tToán sinh viên quốc tế
Phudinhgioihan Diendantoanhoc.net
TUYỂN TẬP ĐỀ THI OLYMPIC
TOÁN SINH VIÊN QUỐC TẾ
International Mathematics Competition for
University Students
1994-2013
Mục lục
IMC 1994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
IMC 1995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
IMC 1996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
IMC 1997 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
IMC 1997 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
IMC 1998 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
IMC 1998 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
IMC 1999 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
IMC 1999 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
IMC 2000 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
IMC 2000 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
IMC 2001 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
IMC 2001 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
IMC 2002 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
IMC 2002 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
IMC 2003 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
IMC 2003 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
IMC 2004 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
IMC 2004 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
IMC 2005 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
IMC 2005 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
IMC 2006 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
IMC 2006 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
IMC 2007 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
IMC 2007 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
IMC 2008 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
IMC 2008 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
IMC 2009 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
IMC 2009 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
IMC 2010 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
IMC 2010 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
IMC 2011 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
IMC 2011 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
IMC 2012 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
IMC 2012 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
IMC 2013 ngày 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
IMC 2013 ngày 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
1
International Competition in Mathematics for
Universtiy Students
in
Plovdiv, Bulgaria
1994
1PROBLEMS AND SOLUTIONS
First day — July 29, 1994
Problem 1. (13 points)
a) Let A be a n × n, n ≥ 2, symmetric, invertible matrix with real
positive elements. Show that zn ≤ n
2 − 2n, where zn is the number of zero
elements in A−1.
b) How many zero elements are there in the inverse of the n× n matrix
A =


1 1 1 1 . . . 1
1 2 2 2 . . . 2
1 2 1 1 . . . 1
1 2 1 2 . . . 2
. . . . . . . . . . . . . . . . . . . .
1 2 1 2 . . . . . .


?
Solution. Denote by aij and bij the elements of A and A
−1, respectively.
Then for k 6= m we have
n∑
i=0
akibim = 0 and from the positivity of aij we
conclude that at least one of {bim : i = 1, 2, . . . , n} is positive and at least
one is negative. Hence we have at least two non-zero elements in every
column of A−1. This proves part a). For part b) all bij are zero except
b1,1 = 2, bn,n = (−1)
n, bi,i+1 = bi+1,i = (−1)
i for i = 1, 2, . . . , n− 1.
Problem 2. (13 points)
Let f ∈ C1(a, b), lim
x→a+
f(x) = +∞, lim
x→b−
f(x) = −∞ and
f ′(x)+ f2(x) ≥ −1 for x ∈ (a, b). Prove that b−a ≥ pi and give an example
where b− a = pi.
Solution. From the inequality we get
d
dx
(arctg f(x) + x) =
f ′(x)
1 + f2(x)
+ 1 ≥ 0
for x ∈ (a, b). Thus arctg f(x)+x is non-decreasing in the interval and using
the limits we get
pi
2
+ a ≤ −
pi
2
+ b. Hence b− a ≥ pi. One has equality for
f(x) = cotg x, a = 0, b = pi.
Problem 3. (13 points)
2Given a set S of 2n − 1, n ∈ N, different irrational numbers. Prove
that there are n different elements x1, x2, . . . , xn ∈ S such that for all non-
negative rational numbers a1, a2, . . . , an with a1 + a2 + · · ·+ an > 0 we have
that a1x1 + a2x2 + · · ·+ anxn is an irrational number.
Solution. Let I be the set of irrational numbers, Q – the set of rational
numbers, Q+ = Q∩ [0,∞). We work by induction. For n = 1 the statement
is trivial. Let it be true for n − 1. We start to prove it for n. From the
induction argument there are n − 1 different elements x1, x2, . . . , xn−1 ∈ S
such that
(1)
a1x1 + a2x2 + · · · + an−1xn−1 ∈ I
for all a1, a2, . . . , an ∈ Q
+ with a1 + a2 + · · ·+ an−1 > 0.
Denote the other elements of S by xn, xn+1, . . . , x2n−1. Assume the state-
ment is not true for n. Then for k = 0, 1, . . . , n − 1 there are rk ∈ Q such
that
(2)
n−1∑
i=1
bikxi + ckxn+k = rk for some bik, ck ∈ Q
+,
n−1∑
i=1
bik + ck > 0.
Also
(3)
n−1∑
k=0
dkxn+k = R for some dk ∈ Q
+,
n−1∑
k=0
dk > 0, R ∈ Q.
If in (2) ck = 0 then (2) contradicts (1). Thus ck 6= 0 and without loss of
generality one may take ck = 1. In (2) also
n−1∑
i=1
bik > 0 in view of xn+k ∈ I.
Replacing (2) in (3) we get
n−1∑
k=0
dk
(
−
n−1∑
i=1
bikxi + rk
)
= R or
n−1∑
i=1
(
n−1∑
k=0
dkbik
)
xi ∈ Q,
which contradicts (1) because of the conditions on b′s and d′s.
Problem 4. (18 points)
Let α ∈ R \ {0} and suppose that F and G are linear maps (operators)
from Rn into Rn satisfying F ◦G−G ◦ F = αF .
a) Show that for all k ∈ N one has F k ◦G−G ◦ F k = αkF k.
b) Show that there exists k ≥ 1 such that F k = 0.
3Solution. For a) using the assumptions we have
F k ◦G−G ◦ F k =
k∑
i=1
(
F k−i+1 ◦G ◦ F i−1 − F k−i ◦G ◦ F i
)
=
=
k∑
i=1
F k−i ◦ (F ◦G−G ◦ F ) ◦ F i−1 =
=
k∑
i=1
F k−i ◦ αF ◦ F i−1 = αkF k.
b) Consider the linear operator L(F ) = F ◦G−G◦F acting over all n×n
matrices F . It may have at most n2 different eigenvalues. Assuming that
F k 6= 0 for every k we get that L has infinitely many different eigenvalues
αk in view of a) – a contradiction.
Problem 5. (18 points)
a) Let f ∈ C[0, b], g ∈ C(R) and let g be periodic with period b. Prove
that
∫ b
0
f(x)g(nx)dx has a limit as n →∞ and
lim
n→∞
∫ b
0
f(x)g(nx)dx =
1
b
∫ b
0
f(x)dx ·
∫ b
0
g(x)dx.
b) Find
lim
n→∞
∫ pi
0
sinx
1 + 3cos 2nx
dx.
Solution. Set ‖g‖1 =
∫ b
0
|g(x)|dx and
ω(f, t) = sup {|f(x)− f(y)| : x, y ∈ [0, b], |x− y| ≤ t} .
In view of the uniform continuity of f we have ω(f, t) → 0 as t → 0. Using
the periodicity of g we get
∫ b
0
f(x)g(nx)dx =
n∑
k=1
∫ bk/n
b(k−1)/n
f(x)g(nx)dx
=
n∑
k=1
f(bk/n)
∫ bk/n
b(k−1)/n
g(nx)dx +
n∑
k=1
∫ bk/n
b(k−1)/n
{f(x)− f(bk/n)}g(nx)dx
=
1
n
n∑
k=1
f(bk/n)
∫ b
0
g(x)dx + O(ω(f, b/n)‖g‖1)
4=
1
b
n∑
k=1
∫ bk/n
b(k−1)/n
f(x)dx
∫ b
0
g(x)dx
+
1
b
n∑
k=1
(
b
n
f(bk/n)−
∫ bk/n
b(k−1)/n
f(x)dx
)∫ b
0
g(x)dx + O(ω(f, b/n)‖g‖1)
=
1
b
∫ b
0
f(x)dx
∫ b
0
g(x)dx + O(ω(f, b/n)‖g‖1).
This proves a). For b) we set b = pi, f(x) = sinx, g(x) = (1 + 3cos 2x)−1.
From a) and
∫ pi
0
sinxdx = 2,
∫ pi
0
(1 + 3cos 2x)−1dx =
pi
2
we get
lim
n→∞
∫ pi
0
sinx
1 + 3cos 2nx
dx = 1.
Problem 6. (25 points)
Let f ∈ C2[0, N ] and |f ′(x)| 0 for every x ∈ [0, N ]. Let
0 ≤ m0 < m1 < · · · < mk ≤ N be integers such that ni = f(mi) are also
integers for i = 0, 1, . . . , k. Denote bi = ni − ni−1 and ai = mi − mi−1 for
i = 1, 2, . . . , k.
a) Prove that
−1 <
b1
a1
<
b2
a2
< · · · <
bk
ak
< 1.
b) Prove that for every choice of A > 1 there are no more than N/A
indices j such that aj > A.
c) Prove that k ≤ 3N 2/3 (i.e. there are no more than 3N 2/3 integer
points on the curve y = f(x), x ∈ [0, N ]).
Solution. a) For i = 1, 2, . . . , k we have
bi = f(mi)− f(mi−1) = (mi −mi−1)f
′(xi)
for some xi ∈ (mi−1,mi). Hence
bi
ai
= f ′(xi) and so −1 <
bi
ai
< 1. From the
convexity of f we have that f ′ is increasing and
bi
ai
= f ′(xi) < f
′(xi+1) =
bi+1
ai+1
because of xi < mi < xi+1.
5b) Set SA = {j ∈ {0, 1, . . . , k} : aj > A}. Then
N ≥ mk −m0 =
k∑
i=1
ai ≥
∑
j∈SA
aj > A|SA|
and hence |SA| < N/A.
c) All different fractions in (−1, 1) with denominators less or equal A are
no more 2A2. Using b) we get k < N/A + 2A2. Put A = N 1/3 in the above
estimate and get k < 3N 2/3.
Second day — July 30, 1994
Problem 1. (14 points)
Let f ∈ C1[a, b], f(a) = 0 and suppose that λ ∈ R, λ > 0, is such that
|f ′(x)| ≤ λ|f(x)|
for all x ∈ [a, b]. Is it true that f(x) = 0 for all x ∈ [a, b]?
Solution. Assume that there is y ∈ (a, b] such that f(y) 6= 0. Without
loss of generality we have f(y) > 0. In view of the continuity of f there exists
c ∈ [a, y) such that f(c) = 0 and f(x) > 0 for x ∈ (c, y]. For x ∈ (c, y] we
have |f ′(x)| ≤ λf(x). This implies that the function g(x) = ln f(x)− λx is
not increasing in (c, y] because of g ′(x) =
f ′(x)
f(x)
−λ ≤ 0. Thus ln f(x)−λx ≥
ln f(y)− λy and f(x) ≥ eλx−λyf(y) for x ∈ (c, y]. Thus
0 = f(c) = f(c + 0) ≥ eλc−λyf(y) > 0
— a contradiction. Hence one has f(x) = 0 for all x ∈ [a, b].
Problem 2. (14 points)
Let f : R2 → R be given by f(x, y) = (x2 − y2)e−x
2
−y2 .
a) Prove that f attains its minimum and its maximum.
b) Determine all points (x, y) such that
∂f
∂x
(x, y) =
∂f
∂y
(x, y) = 0 and
determine for which of them f has global or local minimum or maximum.
Solution. We have f(1, 0) = e−1, f(0, 1) = −e−1 and te−t ≤ 2e−2 for
t ≥ 2. Therefore |f(x, y)| ≤ (x2 + y2)e−x
2
−y2 ≤ 2e−2 < e−1 for (x, y) /∈
M = {(u, v) : u2 + v2 ≤ 2} and f cannot attain its minimum and its
6maximum outside M . Part a) follows from the compactness of M and the
continuity of f . Let (x, y) be a point from part b). From
∂f
∂x
(x, y) =
2x(1 − x2 + y2)e−x
2
−y2 we get
(1) x(1− x2 + y2) = 0.
Similarly
(2) y(1 + x2 − y2) = 0.
All solutions (x, y) of the system (1), (2) are (0, 0), (0, 1), (0,−1), (1, 0)
and (−1, 0). One has f(1, 0) = f(−1, 0) = e−1 and f has global maximum
at the points (1, 0) and (−1, 0). One has f(0, 1) = f(0,−1) = −e−1 and
f has global minimum at the points (0, 1) and (0,−1). The point (0, 0)
is not an extrema point because of f(x, 0) = x2e−x
2
> 0 if x 6= 0 and
f(y, 0) = −y2e−y
2
< 0 if y 6= 0.
Problem 3. (14 points)
Let f be a real-valued function with n + 1 derivatives at each point of
R. Show that for each pair of real numbers a, b, a < b, such that
ln
(
f(b) + f ′(b) + · · ·+ f (n)(b)
f(a) + f ′(a) + · · ·+ f (n)(a)
)
= b− a
there is a number c in the open interval (a, b) for which
f (n+1)(c) = f(c).
Note that ln denotes the natural logarithm.
Solution. Set g(x) =
(
f(x) + f ′(x) + · · ·+ f (n)(x)
)
e−x. From the
assumption one get g(a) = g(b). Then there exists c ∈ (a, b) such that
g′(c) = 0. Replacing in the last equality g ′(x) =
(
f (n+1)(x)− f(x)
)
e−x we
finish the proof.
Problem 4. (18 points)
Let A be a n× n diagonal matrix with characteristic polynomial
(x− c1)
d1(x− c2)
d2 . . . (x− ck)
dk ,
where c1, c2, . . . , ck are distinct (which means that c1 appears d1 times on the
diagonal, c2 appears d2 times on the diagonal, etc. and d1+d2+· · ·+dk = n).
7Let V be the space of all n×n matrices B such that AB = BA. Prove that
the dimension of V is
d21 + d
2
2 + · · ·+ d
2
k.
Solution. Set A = (aij)
n
i,j=1, B = (bij)
n
i,j=1, AB = (xij)
n
i,j=1 and
BA = (yij)
n
i,j=1. Then xij = aiibij and yij = ajjbij . Thus AB = BA is
equivalent to (aii − ajj)bij = 0 for i, j = 1, 2, . . . , n. Therefore bij = 0 if
aii 6= ajj and bij may be arbitrary if aii = ajj. The number of indices (i, j)
for which aii = ajj = cm for some m = 1, 2, . . . , k is d
2
m. This gives the
desired result.
Problem 5. (18 points)
Let x1, x2, . . . , xk be vectors of m-dimensional Euclidian space, such that
x1+x2+ · · ·+xk = 0. Show that there exists a permutation pi of the integers
{1, 2, . . . , k} such that
∥∥∥∥∥
n∑
i=1
xpi(i)
∥∥∥∥∥ ≤
(
k∑
i=1
‖xi‖
2
)1/2
for each n = 1, 2, . . . , k.
Note that ‖ · ‖ denotes the Euclidian norm.
Solution. We define pi inductively. Set pi(1) = 1. Assume pi is defined
for i = 1, 2, . . . , n and also
(1)
∥∥∥∥∥
n∑
i=1
xpi(i)
∥∥∥∥∥
2
≤
n∑
i=1
‖xpi(i)‖
2.
Note (1) is true for n = 1. We choose pi(n + 1) in a way that (1) is fulfilled
with n + 1 instead of n. Set y =
n∑
i=1
xpi(i) and A = {1, 2, . . . , k} \ {pi(i) : i =
1, 2, . . . , n}. Assume that (y, xr) > 0 for all r ∈ A. Then
(
y,
∑
r∈A
xr
)
> 0
and in view of y +
∑
r∈A
xr = 0 one gets −(y, y) > 0, which is impossible.
Therefore there is r ∈ A such that
(2) (y, xr) ≤ 0.
Put pi(n + 1) = r. Then using (2) and (1) we have
∥∥∥∥∥
n+1∑
i=1
xpi(i)
∥∥∥∥∥
2
= ‖y + xr‖
2 = ‖y‖2 + 2(y, xr) + ‖xr‖
2 ≤ ‖y‖2 + ‖xr‖
2 ≤
8≤
n∑
i=1
‖xpi(i)‖
2 + ‖xr‖
2 =
n+1∑
i=1
‖xpi(i)‖
2,
which verifies (1) for n + 1. Thus we define pi for every n = 1, 2, . . . , k.
Finally from (1) we get∥∥∥∥∥
n∑
i=1
xpi(i)
∥∥∥∥∥
2
≤
n∑
i=1
‖xpi(i)‖
2 ≤
k∑
i=1
‖xi‖
2.
Problem 6. (22 points)
Find lim
N→∞
ln2 N
N
N−2∑
k=2
1
ln k · ln(N − k)
. Note that ln denotes the natural
logarithm.
Solution. Obviously
(1) AN =
ln2 N
N
N−2∑
k=2
1
ln k · ln(N − k)
≥
ln2 N
N
·
N − 3
ln2 N
= 1−
3
N
.
Take M , 2 ≤ M < N/2. Then using that
1
ln k · ln(N − k)
is decreasing in
[2, N/2] and the symmetry with respect to N/2 one get
AN =
ln2 N
N


M∑
k=2
+
N−M−1∑
k=M+1
+
N−2∑
k=N−M

 1ln k · ln(N − k) ≤
≤
ln2 N
N
{
2
M − 1
ln 2 · ln(N − 2)
+
N − 2M − 1
lnM · ln(N −M)
}
≤
≤
2
ln 2
·
M lnN
N
+
(
1−
2M
N
)
lnN
lnM
+ O
(
1
lnN
)
.
Choose M =
[
N
ln2 N
]
+ 1 to get
(2) AN ≤
(
1−
2
N ln2 N
)
lnN
lnN − 2 ln lnN
+O
(
1
lnN
)
≤ 1+O
(
ln lnN
lnN
)
.
Estimates (1) and (2) give
lim
N→∞
ln2 N
N
N−2∑
k=2
1
ln k · ln(N − k)
= 1.
International Competition in Mathematics for
Universtiy Students
in
Plovdiv, Bulgaria
1995
1PROBLEMS AND SOLUTIONS
First day
Problem 1. (10 points)
Let X be a nonsingular matrix with columns X1, X2, . . . , Xn. Let Y be a
matrix with columns X2, X3, . . . , Xn, 0. Show that the matrices A = Y X
−1
and B = X−1Y have rank n− 1 and have only 0’s for eigenvalues.
Solution. Let J = (aij) be the n× n matrix where aij = 1 if i = j + 1
and aij = 0 otherwise. The rank of J is n − 1 and its only eigenvalues are
0′s. Moreover Y = XJ and A = Y X−1 = XJX−1, B = X−1Y = J . It
follows that both A and B have rank n− 1 with only 0′s for eigenvalues.
Problem 2. (15 points)
Let f be a continuous function on [0, 1] such that for every x ∈ [0, 1] we
have
∫ 1
x
f(t)dt ≥ 1− x
2
2
. Show that
∫ 1
0
f2(t)dt ≥ 1
3
.
Solution. From the inequality
0 ≤
∫ 1
0
(f(x)− x)2 dx =
∫ 1
0
f2(x)dx− 2
∫ 1
0
xf(x)dx +
∫ 1
0
x2dx
we get ∫ 1
0
f2(x)dx ≥ 2
∫ 1
0
xf(x)dx−
∫ 1
0
x2dx = 2
∫ 1
0
xf(x)dx− 1
3
.
From the hypotheses we have
∫ 1
0
∫ 1
x
f(t)dtdx ≥
∫ 1
0
1− x2
2
dx or
∫ 1
0
tf(t)dt ≥
1
3
. This completes the proof.
Problem 3. (15 points)
Let f be twice continuously differentiable on (0,+∞) such that
lim
x→0+
f ′(x) = −∞ and lim
x→0+
f ′′(x) = +∞. Show that
lim
x→0+
f(x)
f ′(x)
= 0.
2Solution. Since f ′ tends to −∞ and f ′′ tends to +∞ as x tends to
0+, there exists an interval (0, r) such that f ′(x) 0 for all
x ∈ (0, r). Hence f is decreasing and f ′ is increasing on (0, r). By the mean
value theorem for every 0 < x < x0 < r we obtain
f(x)− f(x0) = f ′(ξ)(x− x0) > 0,
for some ξ ∈ (x, x0). Taking into account that f ′ is increasing, f ′(x) <
f ′(ξ) < 0, we get
x− x0 < f
′(ξ)
f ′(x)
(x− x0) = f(x)− f(x0)
f ′(x)
< 0.
Taking limits as x tends to 0+ we obtain
−x0 ≤ lim inf
x→0+
f(x)
f ′(x)
≤ lim sup
x→0+
f(x)
f ′(x)
≤ 0.
Since this happens for all x0 ∈ (0, r) we deduce that lim
x→0+
f(x)
f ′(x)
exists and
lim
x→0+
f(x)
f ′(x)
= 0.
Problem 4. (15 points)
Let F : (1,∞) → R be the function defined by
F (x) :=
∫ x2
x
dt
ln t
.
Show that F is one-to-one (i.e. injective) and find the range (i.e. set of
values) of F .
Solution. From the definition we have
F ′(x) =
x− 1
lnx
, x > 1.
Therefore F ′(x) > 0 for x ∈ (1,∞). Thus F is strictly increasing and hence
one-to-one. Since
F (x) ≥ (x2 − x)min
{
1
ln t
: x ≤ t ≤ x2
}
=
x2 − x
lnx2
→∞
3as x →∞, it follows that the range of F is (F (1+),∞). In order to determine
F (1+) we substitute t = ev in the definition of F and we get
F (x) =
∫ 2 ln x
ln x
ev
v
dv.
Hence
F (x) < e2 lnx
∫ 2 ln x
ln x
1
v
dv = x2 ln 2
and similarly F (x) > x ln 2. Thus F (1+) = ln 2.
Problem 5. (20 points)
Let A and B be real n × n matrices. Assume that there exist n + 1
different real numbers t1, t2, . . . , tn+1 such that the matrices
Ci = A + tiB, i = 1, 2, . . . , n + 1,
are nilpotent (i.e. Cni = 0).
Show that both A and B are nilpotent.
Solution. We have that
(A + tB)n = An + tP1 + t
2P2 + · · ·+ tn−1Pn−1 + tnBn
for some matrices P1, P2, . . . , Pn−1 not depending on t.
Assume that a, p1, p2, . . . , pn−1, b are the (i, j)-th entries of the corre-
sponding matrices An, P1, P2, . . . , Pn−1, B
n. Then the polynomial
btn + pn−1t
n−1 + · · · + p2t2 + p1t + a
has at least n + 1 roots t1, t2, . . . , tn+1. Hence all its coefficients vanish.
Therefore An = 0, Bn = 0, Pi = 0; and A and B are nilpotent.
Problem 6. (25 points)
Let p > 1. Show that there exists a constant Kp > 0 such that for every
x, y ∈ R satisfying |x|p + |y|p = 2, we have
(x− y)2 ≤ Kp
(
4− (x + y)2
)
.
4Solution. Let 0 0 such
that
f(x, y) =
(x− y)2
4− (x + y)2 ≤ Kp,δ
for every (x, y) ∈ Dδ = {(x, y) : |x− y| ≥ δ, |x|p + |y|p = 2}.
Since Dδ is compact it is enough to show that f is continuous on Dδ.
For this we show that the denominator of f is different from zero. Assume
the contrary. Then |x + y| = 2, and
∣∣∣∣x + y2
∣∣∣∣p = 1. Since p > 1, the function
g(t) = |t|p is strictly convex, in other words
∣∣∣∣x + y2
∣∣∣∣p < |x|p + |y|p2 whenever
x 6= y. So for some (x, y) ∈ Dδ we have
∣∣∣∣x + y2
∣∣∣∣p < |x|p + |y|p2 = 1 =∣∣∣∣x + y2
∣∣∣∣p. We get a contradiction.
If x and y have different signs then (x, y) ∈ Dδ for all 0 < δ < 1 because
then |x−y| ≥ max{|x|, |y|} ≥ 1 > δ. So we may further assume without loss
of generality that x > 0, y > 0 and xp + yp = 2. Set x = 1 + t. Then
y = (2− xp)1/p=(2− (1 + t)p)1/p =
(
2− (1 + pt + p(p−1)
2
t2 + o(t2))
)1/p
=
(
1− pt− p(p− 1)
2
t2 + o(t2)
)1/p
= 1 +
1
p
(
−pt− p(p− 1)
2
t2 + o(t2)
)
+
1
2p
(
1
p
− 1
)
(−pt + o(t))2 + o(t2)
= 1− t− p− 1
2
t2 + o(t2)− p− 1
2
t2 + o(t2)
= 

Tài liệu đính kèm:

  • pdfNghia_thang10.pdf