Tổng hợp các phương pháp giải bài tập Toán học: Phương trình và hệ phương trình

pdf 382 trang Người đăng khoa-nguyen Lượt xem 1403Lượt tải 5 Download
Bạn đang xem 20 trang mẫu của tài liệu "Tổng hợp các phương pháp giải bài tập Toán học: Phương trình và hệ phương trình", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tổng hợp các phương pháp giải bài tập Toán học: Phương trình và hệ phương trình
	
	




	





 	



















Mục lục
Lời nói đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Các thành viên tham gia chuyên đề . . . . . . . . . . . . . . . . . . . . . . . . 8
1 ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH HỮU TỈ 10
Phương trình bậc ba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Phương trình bậc bốn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Phương trình dạng phân thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Xây dựng phương trình hữu tỉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Một số phương trình bậc cao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH CÓ THAM SỐ 32
Phương pháp sử dụng đạo hàm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Phương pháp dùng định lý Lagrange - Rolle . . . . . . . . . . . . . . . . . . . . . . 42
Phương pháp dùng điều kiện cần và đủ . . . . . . . . . . . . . . . . . . . . . . . . . 46
Phương pháp ứng dụng hình học giải tích và hình học phẳng . . . . . . . . . . . . . 55
Hình học không gian và việc khảo sát hệ phương trình ba ẩn . . . . . . . . . . . . . 76
Một số bài phương trình, hệ phương trình có tham số trong các kì thi Olympic . . . 81
3 CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH 93
Phương pháp đặt ẩn phụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Một số cách đặt ẩn phụ cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Đặt ẩn phụ đưa về phương trình tích . . . . . . . . . . . . . . . . . . . . . . . 94
Đặt ẩn phụ đưa về phương trình đẳng cấp . . . . . . . . . . . . . . . . . . . . 101
Phương pháp đặt ẩn phụ không hoàn toàn . . . . . . . . . . . . . . . . . . . . 103
Phương pháp sử dụng hệ số bất định . . . . . . . . . . . . . . . . . . . . . . . 108
Đặt ẩn phụ đưa về hệ phương trình . . . . . . . . . . . . . . . . . . . . . . . . 109
Phương pháp lượng giác hóa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Phương pháp biến đổi đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Phương pháp dùng lượng liên hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Phương pháp dùng đơn điệu hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Phương pháp dùng bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Một số bài toán chọn lọc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3
44 PHƯƠNG TRÌNH MŨ-LOGARIT 158
Lý thuyết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Phương pháp đặt ẩn phụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Phương pháp dùng đơn điệu hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Phương pháp biến đổi đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5 HỆ PHƯƠNG TRÌNH 177
Các loại hệ cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Hệ phương trình hoán vị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Phương pháp đặt ẩn phụ trong giải hệ phương trình . . . . . . . . . . . . . . . . . . 206
Phương pháp biến đổi đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Phương pháp dùng đơn điệu hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Phương pháp hệ số bất định . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Kĩ thuật đặt ẩn phụ tổng - hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Phương pháp dùng bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Tổng hợp các bài hệ phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Hệ phương trình hữu tỉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Hệ phương trình vô tỉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
6 SÁNG TẠO PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH 297
Xây dựng một số phương trình được giải bằng cách đưa về hệ phương trình . . . . 297
Sử dụng công thức lượng giác để sáng tác các phương trình đa thức bậc cao . . . . 307
Sử dụng các hàm lượng giác hyperbolic . . . . . . . . . . . . . . . . . . . . . . . . . 310
Sáng tác một số phương trình đẳng cấp đối với hai biểu thức . . . . . . . . . . . . . 312
Xây dựng phương trình từ các đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . 318
Xây dựng phương trình từ các hệ đối xứng loại II . . . . . . . . . . . . . . . . . . . 321
Xây dựng phương trình vô tỉ dựa vào tính đơn điệu của hàm số. . . . . . . . . 324
Xây dựng phương trình vô tỉ dựa vào các phương trình lượng giác. . . . . . . . 328
Sử dụng căn bậc n của số phức để sáng tạo và giải hệ phương trình. . . . . . . 331
Sử dụng bất đẳng thức lượng giác trong tam giác . . . . . . . . . . . . . . . . 338
Sử dụng hàm ngược để sáng tác một số phương trình, hệ phương trình. . . . . 345
Sáng tác hệ phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Kinh nghiệm giải một số bài hệ phương trình . . . . . . . . . . . . . . . . . . . . . 353
7 Phụ lục 1: GIẢI TOÁN BẰNG PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH 362
8 Phụ lục 2: PHƯƠNG TRÌNH VÀ CÁC NHÀ TOÁN HỌC NỔI TIẾNG 366
Lịch sử phát triển của phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Có mấy cách giải phương trình bậc hai? . . . . . . . . . . . . . . . . . . . . . 366
Cuộc thách đố chấn động thế giới toán học . . . . . . . . . . . . . . . . . . . . 368
Những vinh quang sau khi đã qua đời . . . . . . . . . . . . . . . . . . . . . . . 372
5Tỉểu sử một số nhà toán học nổi tiếng . . . . . . . . . . . . . . . . . . . . . . . . . 376
Một cuộc đời trên bia mộ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Chỉ vì lề sách quá hẹp! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Hai gương mặt trẻ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Sống hay chết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
9 Tài liệu tham khảo 381
Lời nói đầu
Phương trình là một trong những phân môn quan trọng nhất của Đại số vì có những ứng
dụng rất lớn trong các ngành khoa học. Sớm được biết đến từ thời xa xưa do nhu cầu tính
toán của con người và ngày càng phát triển theo thời gian, đến nay, chỉ xét riêng trong Toán
học, lĩnh vực phương trình đã có những cải tiến đáng kể, cả về hình thức (phương trình hữu tỉ,
phương trình vô tỉ, phương trình mũ - logarit) và đối tượng (phương trình hàm, phương trình
sai phân, phương trình đạo hàm riêng, . . . )
Còn ở Việt Nam, phương trình, từ năm lớp 8, đã là một dạng toán quen thuộc và được
yêu thích bởi nhiều bạn học sinh. Lên đến bậc THPT, với sự hỗ trợ của các công cụ giải tích
và hình học, những bài toán phương trình - hệ phương trình ngày càng được trau chuốt, trở
thành nét đẹp của Toán học và một phần không thể thiếu trong các kì thi Học sinh giỏi, thi
Đại học.
Đã có rất nhiều bài viết về phương trình - hệ phương trình, nhưng chưa thể đề cập một
cách toàn diện về những phương pháp giải và sáng tạo phương trình. Nhận thấy nhu cầu có
một tài liệu đầy đủ về hình thức và nội dung cho cả hệ chuyên và không chuyên, Diễn đàn
MathScope đã tiến hành biên soạn quyển sách Chuyên đề phương trình - hệ phương trình mà
chúng tôi hân hạnh giới thiệu đến các thầy cô giáo và các bạn học sinh.
Quyển sách này gồm 6 chương, với các nội dung như sau:
> Chương I: Đại cương về phương hữu tỉ cung cấp một số cách giải tổng quát phương
trình bậc ba và bốn, ngoài ra còn đề cập đến phương trình phân thức và những cách xây dựng
phương trình hữu tỉ.
> Chương II: Phương trình, hệ phương trình có tham số đề cập đến các phương pháp
giải và biện luận bài toán có tham số ,cũng như một số bài toán thường gặp trong các kì thi
Học sinh giỏi.
> Chương III: Các phương pháp giải phương trình chủ yếu tổng hợp những phương
pháp quen thuộc như bất đẳng thức, lượng liên hợp, hàm số đơn điệu, . . . với nhiều bài toán
mở rộng nhằm giúp bạn đọc có cách nhìn tổng quan về phương trình.
Chương này không đề cập đến Phương trình lượng giác, vì vấn đề này đã có trong chuyên đề
Lượng giác của Diễn đàn.
> Chương IV: Phương trình mũ – logarit đưa ra một số dạng bài tập ứng dụng của hàm
số logarit, với nhiều phương pháp biến đổi đa dạng như đặt ẩn phụ, dùng đẳng thức, hàm đơn
điệu, ...
> Chương V: Hệ phương trình là phần trọng tâm của chuyên đề. Nội dung của chương
7bao gồm một số phương pháp giải hệ phương trình và tổng hợp các bài hệ phương trình hay
trong những kì thi học sinh giỏi trong nước cũng như quốc tế.
> Chương VI: Sáng tạo phương trình - hệ phương trình đưa ra những cách xây dựng một bài
hay và khó từ những phương trình đơn giản bằng các công cụ mới như số phức, hàm hyperbolic,
hàm đơn điệu, . . .
Ngoài ra còn có hai phần Phụ lục cung cấp thông tin ứng dụng phương trình, hệ phương
trình trong giải toán và về lịch sử phát triển của phương trình.
Chúng tôi xin ngỏ lời cảm ơn tới những thành viên của Diễn đàn đã chung tay xây dựng
chuyên đề. Đặc biệt xin chân thành cảm ơn thầy Châu Ngọc Hùng, thầy Nguyễn Trường Sơn,
anh Hoàng Minh Quân, anh Lê Phúc Lữ, anh Phan Đức Minh vì đã hỗ trợ và đóng góp những
ý kiến quý giá cho chuyên đề, bạn Nguyễn Trường Thành vì đã giúp ban biên tập kiểm tra các
bài viết để có một tuyển tập hoàn chỉnh.
Niềm hi vọng duy nhất của những người làm chuyên đề là bạn đọc sẽ tìm thấy nhiều điều
bổ ích và tình yêu toán học thông qua quyển sách này. Chúng tôi xin đón nhận và hoan nghênh
mọi ý kiến xây dựng của bạn đọc để chuyên đề được hoàn thiện hơn. Mọi góp ý xin vui lòng
chuyển đến anhhuy0706@gmail.com
Thành phố Hồ Chí Minh, ngày 11 tháng 7 năm 2012
Thay mặt nhóm biên soạn
Nguyễn Anh Huy
Các thành viên tham gia chuyên đề
Để hoàn thành được các nội dung trên, chính là nhờ sự cố gắng nỗ lực của các thành viên của
diễn đàn đã tham gia xây dựng chuyên đề:
• Chủ biên: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong - TP HCM)
• Phụ trách chuyên đề: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong - TP HCM),
Nguyễn An Vĩnh Phúc (TN Phổ thông Năng khiếu- TP HCM)
• Đại cương về phương trình hữu tỉ: Huỳnh Phước Trường (THPT Nguyễn Thượng Hiền –
TP HCM), Phạm Tiến Kha (10CT THPT chuyên Lê Hồng Phong - TP HCM)
• Phương trình, hệ phương trình có tham số: thầy Nguyễn Trường Sơn (THPT Yên Mô A
– Ninh Bình), Vũ Trọng Hải (12A6 THPT Thái Phiên - Hải Phòng), Đình Võ Bảo Châu
(THPT chuyên Lê Quý Đôn - Vũng Tàu), Hoàng Bá Minh ( 12A6 THPT chuyên Trần
Đại Nghĩa - TP HCM), Nguyễn Hoàng Nam (THPT Phước Thiền - Đồng Nai), Ong Thế
Phương (11 Toán THPT chuyên Lương Thế Vinh - Đồng Nai)
• Phương pháp đặt ẩn phụ: thầy Mai Ngọc Thi (THPT Hùng Vương - Bình Phước), thầy
Nguyễn Anh Tuấn (THPT Lê Quảng Chí -Hà Tĩnh), Trần Trí Quốc (11TL8 THPT
Nguyễn Huệ - Phú Yên), Hồ Đức Khánh (10CT THPT chuyên Quảng Bình), Đoàn Thế
Hoà (10A7 THPT Long Khánh - Đồng Nai)
• Phương pháp dùng lượng liên hợp: Ninh Văn Tú (THPT chuyên Trần Đại Nghĩa -
TPHCM) , Đinh Võ Bảo Châu (THPT - chuyên Lê Quý Đôn, Vũng Tàu), Đoàn Thế
Hòa (THPT Long Khánh - Đồng Nai)
• Phương pháp dùng bất đẳng thức: Nguyễn An Vĩnh Phúc (TN Phổ thông Năng khiếu-
TP HCM), Phan Minh Nhật, Lê Hoàng Đức (10CT THPT chuyên Lê Hồng Phong - TP
HCM), Đặng Hoàng Phi Long (10A10 THPT Kim Liên – Hà Nội), Nguyễn Văn Bình
(11A5 THPT Trần Quốc Tuấn - Quảng Ngãi),
• Phương pháp dùng đơn điệu: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong
- TP HCM), Hoàng Kim Quân (THPT Hồng Thái – Hà Nội), Đặng Hoàng Phi Long
(10A10 THPT Kim Liên – Hà Nội)
• Phương trình mũ – logarit: Võ Anh Khoa, Nguyễn Thanh Hoài (Đại học KHTN- TP
HCM), Nguyễn Ngọc Duy (11 Toán THPT chuyên Lương Thế Vinh - Đồng Nai)
• Các loại hệ cơ bản: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong - TP HCM)
9• Hệ phương trình hoán vị: thầy Nguyễn Trường Sơn (THPT Yên Mô A – Ninh Bình),
Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong TP HCM), Nguyễn Đình Hoàng
(10A10 THPT Kim Liên - Hà Nội)
• Phương pháp biến đổi đẳng thức: Nguyễn Đình Hoàng (10A10 THPT Kim Liên - Hà
Nội), Trần Văn Lâm (THPT Lê Hồng Phong - Thái Nguyên), Nguyễn Đức Huỳnh (11
Toán THPT Nguyễn Thị Minh Khai - TP HCM)
• Phương pháp hệ số bất định: Lê Phúc Lữ (Đại học FPT – TP HCM), Nguyễn Anh Huy,
Phan Minh Nhật (10CT THPT chuyên Lê Hồng Phong TP HCM)
• Phương pháp đặt ẩn phụ tổng - hiệu: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng
Phong TP HCM)
• Tổng hợp các bài hệ phương trình: Nguyễn Anh Huy (10CT THPT chuyên Lê Hồng Phong
TP HCM), Nguyễn Thành Thi (THPT chuyên Nguyễn Quang Diêu – Đồng Tháp), Trần
Minh Đức (T1K21 THPT chuyên Hà Tĩnh – Hà Tĩnh), Võ Hữu Thắng (11 Toán THPT
Nguyễn Thị Minh Khai – TP HCM)
• Sáng tạo phương trình: thầy Nguyễn Tài Chung (THPT chuyên Hùng Vương – Gia Lai),
thầy Nguyễn Tất Thu (THPT Lê Hồng Phong - Đồng Nai), Nguyễn Lê Thuỳ Linh (10CT
THPT chuyên Lê Hồng Phong – TP HCM)
• Giải toán bằng cách lập phương trình: Nguyễn An Vĩnh Phúc (TN Phổ thông Năng khiếu-
TP HCM)
• Lịch sử phát triển của phương trình: Nguyễn An Vĩnh Phúc (TN Phổ thông Năng khiếu-
TP HCM), Nguyễn Hoàng Nam (THPT Phước Thiền - Đồng Nai)
Chương I: ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH
HỮU TỈ
PHƯƠNG TRÌNH BẬC BA
Một số phương pháp giải phương trình bậc ba
F Phương pháp phân tích nhân tử:
Nếu phương trình bậc ba ax3 + bx2 + cx+ d = 0 có nghiệm x = r thì có nhân tử (x− r) do đó
có thể phân tích
ax3 + bx2 + cx+ d = (x− r)[ax2 + (b+ ar)x+ c+ br + ar2]
Từ đó ta đưa về giải một phương trình bậc hai, có nghiệm là
−b− ra±√b2 − 4ac− 2abr − 3a2r2
2a
F Phương pháp Cardano:
Xét phương trình bậc ba x3 + ax2 + bx+ c = 0 (1).
Bằng cách đặt x = y − a
3
, phương trình (1) luôn biến đổi được về dạng chính tắc:
y3 + py + q = 0(2)
Trong đó: p = b− a
2
3
, q = c+
2a3 − 9ab
27
Ta chỉ xét p, q 6= 0 vì p = 0 hay q = 0 thì đưa về trường hợp đơn giản.
Đặt y = u+ v thay vào (2), ta được:
(u+ v)3 + p(u+ v) + q = 0⇔ u3 + v3 + (3uv + p)(u+ v) + q = 0 (3)
Chọn u, v sao cho 3uv + p = 0 (4).
Như vậy, để tìm u và v, từ (3) và (4) ta có hệ phương trình:u
3 + v3 = −q
u3v3 = −p
3
27
Theo định lí Viete, u3 và v3 là hai nghiệm của phương trình:
X2 + qX − p
3
27
= 0(5)
Đặt ∆ =
q2
4
+
p3
27
10
11
> Khi ∆ > 0, (5) có nghiệm:
u3 = −q
2
+
√
∆, v3 = −q
2
−√∆
Như vậy, phương trình (2) sẽ có nghiệm thực duy nhất:
y = 3
√
−q
2
+
√
∆ + 3
√
−q
2
−
√
∆
> Khi ∆ = 0, (5) có nghiệm kép: u = v = − 3
√
q
2
Khi đó, phương trình (2) có hai nghiệm thực, trong đó một nghiệm kép.
y1 = 2
3
√
−q
2
, y2 = y3 =
3
√
q
2
> Khi ∆ < 0, (5) có nghiệm phức.
Gọi u30 là một nghiệm phức của (5), v
3
0 là giá trị tương ứng sao cho u0v0 = −
p
3
.
Khi đó, phương trình (2) có ba nghiệm phân biệt.
y1 = u0 + v0
y2 = −1
2
(u0 + v0) + i
√
3
2
(u0 − v0)
y3 = −1
2
(u0 + v0)− i
√
3
2
(u0 − v0)
F Phương pháp lượng giác hoá - hàm hyperbolic:
Một phương trình bậc ba, nếu có 3 nghiệm thực, khi biểu diễn dưới dạng căn thức sẽ liên quan
đến số phức. Vì vậy ta thường dùng phương pháp lượng giác hoá để tìm một cách biểu diễn
khác đơn giản hơn, dựa trên hai hàm số cos và arccos
Cụ thể, từ phương trình t3 + pt + q = 0 (∗) ta đặt t = u cosα và tìm u để có thể đưa (∗) về
dạng
4 cos3 α− 3 cosα− cos 3α = 0
Muốn vậy, ta chọn u = 2
√−p
3
và chia 2 vế của (∗) cho u
3
4
để được
4 cos3 α− 3 cosα− 3q
2p
.
√−3
p
= 0⇔ cos 3α = 3q
2p
.
√−3
p
Vậy 3 nghiệm thực là
ti = 2
√−p
3
. cos
[
1
3
arccos
(
3q
2p
.
√−3
p
)
− 2ipi
3
]
với i = 0, 1, 2.
Lưu ý rằng nếu phương trình có 3 nghiệm thực thì p < 0 (điều ngược lại không đúng) nên công
thức trên không có số phức.
Khi phương trình chỉ có 1 nghiệm thực và p 6= 0 ta cũng có thể biểu diễn nghiệm đó bằng công
thức hàm arcosh và arsinh:
>t =
−2|q|
q
.
√−p
3
cosh
[
1
3
.arcosh
(−3|q|
2p
.
√−3
p
)]
nếu p 0.
12
>t = −2
√
p
3
. sinh
[
1
3
.arsinh
(
3q
2p
.
√
3
p
)]
nếu p > 0
Mỗi phương pháp trên đều có thể giải quyết phương trình bậc ba tổng quát. Nhưng mục đích
của chúng ta trong mỗi bài toán luôn là tìm lời giải ngắn nhất, đẹp nhất. Hãy cùng xem qua
một số ví dụ:
Bài tập ví dụ
Bài 1: Giải phương trình x3 + x2 + x = −1
3
Giải
Phương trình không có nghiệm hữu tỉ nên không thể phân tích nhân tử. Trước khi nghĩ tới
công thức Cardano, ta thử quy đồng phương trình:
3x3 + 3x2 + 3x+ 1 = 0
Đại lượng 3x2+3x+1 gợi ta đến một hằng đẳng thức rất quen thuộc x3+3x2+3x+1 = (x+1)3.
Do đó phương trình tương đương:
(x+ 1)3 = −2x3
hay
x+ 1 = − 3√2x
Từ đó suy ra nghiệm duy nhất x =
−1
1 + 3
√
2
.
~ Nhận xét: Ví dụ trên là một phương trình bậc ba có nghiệm vô tỉ, và được giải nhờ khéo léo
biến đổi đẳng thức. Nhưng những bài đơn giản như thế này không có nhiều. Sau đây ta sẽ đi
sâu vào công thức Cardano:
Bài 2: Giải phuơng trình x3 − 3x2 + 4x+ 11 = 0
Giải
Đặt x = y + 1 . Thế vào phương trình đầu bài, ta được phương trình:
y3 + 1.y + 13 = 0
Tính ∆ = 132 +
4
27
.13 =
4567
27
> 0
Áp dụng công thức Cardano suy ra:
y =
3
√√√√−13 +√456727
2
+
3
√√√√−13−√456727
2
Suy ra x =
3
√√√√−13 +√456727
2
+
3
√√√√−13−√456727
2
+ 1.
~ Nhận xét: Ví dụ trên là một ứng dụng cơ bản của công thức Cardano. Tuy nhiên công
thức này không hề dễ nhớ và chỉ được dùng trong các kì thi Học sinh giỏi. Vì thế, có lẽ chúng
ta sẽ cố gắng tìm một con đường “hợp thức hóa” các lời giải trên. Đó là phương pháp lượng
giác hoá. Đầu tiên xét phương trình dạng x3 + px+ q = 0 với p < 0 và có 1 nghiệm thực:
13
Bài 3: Giải phương trình x3 + 3x2 + 2x− 1 = 0
Giải
Đầu tiên đặt x = y− 1 ta đưa về phương trình y3− y− 1 = 0 (1). Đến đây ta dùng lượng giác
như sau:
Nếu |y| < 2√
3
suy ra
∣∣∣∣∣
√
3
2
y
∣∣∣∣∣ < 1. Do đó tồn tại α ∈ [0, pi] sao cho
√
3
2
y = cosα.
Phương trình tương đương:
8
3
√
3
cos3 α− 2√
3
cosα− 1 = 0
hay
cos 3α =
3
√
3
2
(vô nghiệm)
Do đó |y| > 2√
3
. Như vậy luôn tồn tại t thoả y =
1√
3
(t+
1
t
) (∗). Thế vào (1) ta được phương
trình
t3
3
√
3
+
1
3
√
3t3
− 1 = 0
Việc giải phương trình này không khó, xin dành cho bạn đọc. Ta tìm được nghiệm:
x =
1√
3
 3
√
1
2
(
3
√
3−√23)+ 1
3
√
1
2
(
3
√
3−√23)
− 1 2
~ Nhận xét: Câu hỏi đặt ra là: “Sử dụng phương pháp trên như thế nào?”. Muốn trả lời, ta cần
làm sáng tỏ 2 vấn đề:
1) Có luôn tồn tại t thoả mãn cách đặt trên?
Đáp án là không. Coi (∗) là phương trình bậc hai theo t ta sẽ tìm được điều kiện |y| > 2√
3
.
Thật ra có thể tìm nhanh bằng cách dùng AM-GM:
|y| =
∣∣∣∣ 1√3
(
t+
1
t
)∣∣∣∣ = 1√3
(
|t|+ 1|t|
)
> 2√
3
Vậy trước hết ta phải chứng minh (1) không có nghiệm |y| < 2√
3
.
2) Vì sao có số
2√
3
?
Ý tưởng của ta là từ phương trình x3 +px+ q = 0 đưa về một phương trình trùng phương theo
t3 qua cách đặt x = k
(
t+
1
t
)
. Khai triển và đồng nhất hệ số ta được k =
√−p
3
Sau đây là phương trình dạng x3 + px+ q = 0 với p < 0 và có 3 nghiệm thực:
Bài 4: Giải phương trình x3 − x2 − 2x+ 1 = 0
Giải
Đặt y = x− 1
3
. Phương trình tương đương:
y3 − 7
3
y +
7
27
= 0(∗)
14
Với |y| < 2
√
7
3
thì
∣∣∣∣ 3y2√7
∣∣∣∣ < 1. Do đó tồn tại α ∈ [0, pi] sao cho cosα = 3y2√7 hay y = 2
√
7 cosα
3
.
Thế vào (∗), ta được:
cos 3α = −
√
7
14
Đây là phương trình lượng giác cơ bản. Dễ dàng tìm được ba nghiệm của phương trình ban
đầu:
x1 =
2
√
7
3
cos

arccos
(
−
√
7
14
)
3
+ 13
x2,3 =
2
√
7
3
cos

± arccos
(
−
√
7
14
)
3
+
2pi
3
+ 13
Do phương trình bậc ba có tối đa ba nghiệm phân

Tài liệu đính kèm:

  • pdfPhuong_phap_giai_phuong_trinh_va_he_phuong_trinh.pdf