Tổng hợp các dạng toán ôn tập thi học kỳ hay môn: Toán - Lớp 9

docx 9 trang Người đăng minhphuc19 Lượt xem 912Lượt tải 5 Download
Bạn đang xem tài liệu "Tổng hợp các dạng toán ôn tập thi học kỳ hay môn: Toán - Lớp 9", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tổng hợp các dạng toán ôn tập thi học kỳ hay môn: Toán - Lớp 9
TỔNG HỢP CÁC DẠNG TOÁN ÔN TẬP THI HỌC KỲ HAY
 	Môn : TOÁN - Lớp 9
DẠNG 1: CÁC BÀI TOÁN VỀ THỰC HIỆN PHÉP TÍNH
Bài 1: (1,5đ) Tính:
1.a) A = 	b) B = + 
2. a) b/ 	 c/ 
3. a) 	b/ 
 c/ 	d/ 
4 . Tính và rút gọn :
	a) 	b) D = với 
5. Rút gọn các biểu thức sau: 
 a) ; 
 b) ; 
 c) . 
6.Tính: a/ ; 	b/ 
c/ 	d/ 
7. (3 điểm) Thực hiện các phép tính
a/ 	b/ 
c/ 	d/ 
8.Thực hiện phép tính : 
	a/ 	b/ 
	c/ 	d/ 
9.Tính: a) 	 b) 
 c) d) 
10.Thực hiện các phép tính sau:
a) 	b) 
11.Rút gọn các biểu thức sau:
a/ ; b/ ; c/ 
d/ ;	e/ Với a > 0, b > 0.
12.Thu gọn các biểu thức sau :
A = + 
B = 
C = 
13.Rút gọn:
 	 	 14.Thực hiện phép tính (thu gọn):
 1) 2) 3) 
15,Thực hiện các phép tính:
a/;	b/ ;	c/ 
16.Tính giá trị của biểu thức : 
 a) A = 	b) B=	
17.Tính:
a/ ;	b/ ; c/ 
DẠNG 2 GIẢI CÁC PHƯƠNG TRÌNH
1.Giải các phương trình :
	a) = 5	b) = 1
2.Giải các phương trình:
a/ 	b/ 
3.Giải các phương trình sau: a) 	b) 
4. Giải phương trình: 
 1) (0.75đ) 
 2) 
6.Giải phương trình: 
7.Giải các phương trình sau:
a/ ;	b/ 
DẠNG 3: CÁC BÀI TOÁN TỔNG HỢP RÚT GỌN
1.Cho biểu thức: với x0, x ¹ 1
Rút gọn A.	b) Tìm giá trị lớn nhất của A.
2,a) Rút gọn biểu thức . (với x 0; x 1)
b) Cho hai số a,b thoả mãn: a3 + b3=. Tính giá trị của biểu thức: M= a5 + b5
3.Rút gọn các biểu thức sau 
a/ A = với 	b/ B = 
4. a) Rút gọn P biết P2 = .
 b) Rút gọn biểu thức sau:Q= với x 0 ; x ≠ 1 và x ≠ 4. 
c)Rút gọn biểu thức với x ≥ 0; x ≠ 4
5,Cho biểu thức: Cho (với)
a) Rút gọn biểu thức A.	b) Tìm x sao cho A > -1.
6.Rút gọn 	 với và 
7.Cho biểu thức với x 0 và x1	
 a) Rút gọn M.	b) Tìm số nguyên x để M có giá trị là số nguyên 
8.Rút gọn biểu thức: (với a > 0, b > 0 và )
9.Rút gọn biểu thức sau: với x > 0 và x ≠ 4
10.Cho biểu thức: P = với x 0, y 0, xy 1.
a/ Rút gọn P.	b/ Tìm giá trị lớn nhất của P.
11.Cho biểu thức: P = với x 0, y 0, xy 1.
a/ Rút gọn P.	b/ Tìm giá trị lớn nhất của P.
12.Rút gọn biểu thức 
 với x>0 và 
13.Cho biểu thức: P = 	
a) Tìm điều kiện xác định của biểu thức P. Rút gọn biểu thức P.	
b) Tìm x để P=2	c) Tính giá trị của P tai x thỏa mãn 
DẠNG 4 : CÁC BÀI TẬP VỀ HÀM SỐ BẬC NHẤT:
1. Cho hai hàm số : y = x ( D1 ) và y = – x + 3 ( D2 )
 a) Vẽ đồ thị của hai hàm số trên trong cùng một mặt phẳng tọa độ Oxy.
 b) Tìm tọa độ giao điểm của hai đường thẳng trên bằng phép tính.
 c) Viết phương trình đường thẳng (D) biết (D) song song với (D2) và cắt (D1) tại điểm M có hoành độ là 4.
2.Cho hàm số có đồ thị là và hàm số có đồ thị là .
	a) Vẽ và trên cùng một mặt phẳng tọa độ.	
	b) Xác định các hệ số a , b biết đường thẳng song song với và đi qua điểm M(2; 3)
3.Cho đường thẳng (d1): y= - 3x + 4 và đường thẳng (d2): y= x - 4
a/ Vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy
b/ Tìm tọa độ giao điểm A của (d1) và (d2) bằng phép toán
c/ Xác định các hệ số a và b của đường thẳng (d3):y=ax+b () biết (d3) song song với (d1) và (d3) cắt (d2) tại điểm B có hoành độ bằng 3
4,Trong mặt phẳng tọa độ Oxy: 
Tìm a và b của hàm số bậc nhất y = ax + b . Biết đồ thị của hàm số song song với đường thẳng y = −3x + 2015 và đi qua điểm M(1 ; −1).
 b) Vẽ đồ thị hàm số y = −3x + 2 (D) và đồ thị hàm số (D’) trên cùng 
 một mặt phẳng tọa độ.
 c) Tìm tọa độ giao điểm của (D) và (D’) bằng phép tính.
5.Cho hàm số có đồ thị và hàm số có đồ thị 
Vẽ và trên cùng một mặt phẳng tọa độ.
Tìm tọa độ giao điểm của và bằng phép toán.
6.Cho hàm số y = – x + 2 và hàm số y = 2x – 1 có đồ thị lần lượt là (d1) và (d2)
a/ Vẽ (d1) và (d2) trên cùng mặt phẳng toạ độ 
	b/ Tìm toạ độ giao điểm M của (d1) và (d2) bằng phép tính 
7. (2,5 điểm) Cho hai đường thẳng y = x + 1 (d1) và y = 4 – 2x (d2)
Vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ.
Tìm tọa độ giao điểm A của hai đường thăng (d1) và (d2) bằng phép toán.
Đường thẳng (d3) có phương trình y = 3x + 2m (với m là tham số). Tìm m để 3 đường thẳng (d1), (d2), (d3) đồng qui tại một điểm. 	
8. Cho hàm số y = 2x + 4 có đồ thị là (d1) 
 và hàm số y = – x + 1 có đồ thị là (d2)	
Vẽ (d1) và (d2) trên cùng một mặt phẳng toạ độ Oxy.	
Xác định các hệ số a, b của đường thẳng (d3): y = ax + b. Biết (d3) song song với (d1) và (d3) cắt (d2) tại một điểm có hoành độ bằng 2. 
9.Cho hai đường thẳng (D): y = – x – 4 và (D1): y = 3x + 2
a) Vẽ đồ thị (D) và (D1) trên cùng một mặt phẳng tọa độ Oxy.
b) Xác định tọa độ giao điểm A của hai đường thẳng (D) và (D1) bằng phép toán. 
c) Viết phương trình đường thẳng (D2): y = ax + b (a ≠ 0) song song với đường thẳng (D) và đi qua điểm B(–2 ; 5). 
10.Trong các đường thẳng sau đây: y = 3x + 4 ; y = 3x - 7 ; y = x - 5 
- Những cặp đường thẳng nào song song với nhau?
- Những cặp đường thẳng nào cắt nhau?
11.a/ Vẽ trên cùng một mặt phẳng toạ độ Oxy đồ thị của hai hàm số sau: 
y = 2x - 1 (d) và y = x + 1 (d’)
b/ Tìm toạ độ giao điểm M của hai đồ thị trên bằng phép toán.
12.Cho hàm số có đồ thị là (d1) và hàm số có đồ thị là (d2).
a) Vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ giao điểm của (d1) và (d2) bằng phép tính
13. Cho hàm số y = có đồ thị (D) và hàm số y = x – 6 có đồ thị (D/).
Vẽ (D) và (D/) trên cùng một hệ trục tọa độ.
Tìm toạ độ giao điểm A của (D) và (D/) bằng phép tính.	
14. Cho hàm số y = 2x có đồ thị (D) và hàm số có đồ thị (D/ )
 a) Vẽ (D) và (D/ ) trên cùng mặt phẳng tọa độ Oxy 
 b) Một đường thẳng (D1) song song với (D) và đi qua điểm A( -2;1) . Viết phương trình đường thẳng (D1)
15.Cho các hàm số có đồ thị là (D1) và có đồ thị là (D2). 
Vẽ (D1) và (D2) trên cùng hệ trục tọa độ. 
Viết phương trình đường thẳng (D3) biết (D3) // (D1) và (D3) đi qua điểm M (1;7) 
16.1) Vẽ đồ thị (d) của hàm số (1đ)
 2) Xác định các hệ số a và b của hàm số y = ax + b, biết rằng đồ thị (d’) của hàm số này song song với (d) và cắt trục hoành tại điểm có hoành độ bằng 5. (1đ)
17.Cho hàm số y = (m – 1)x + m (1)
	a) Xác định m để đường thẳng (1) song song với đường thẳng y = x - 
	b) Xác định m để đường thẳng (1) cắt trục hoàng tại điểm A có hoành độ x=2
	c) Xác định m để đường thẳng (1) là tiếp tuyến của đường tròn tâm (O) bán kính bằng .(với O là gốc tọa độ của mặt phẳng Oxy) 
DẠNG 5: CÁC BÀI HÌNH TỔNG HỢP TRONG HỌC KÌ I
1.Cho đường tròn (O;R) có đường kính BC, lấy điểm A thuộc 
 (O) sao cho AB = R.
Chứng minh ABC là tam giác vuông.Tính độ dài AC theo R.
Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M.Trên (O) lấy điểm D sao cho MD = MA (DA). Chứng minh MD là tiếp tuyến của (O).
Vẽ đường kính AK của (O), MK cắt (O) tại E (EK). Gọi H là giao điểm của AD và MO. Chứng minh ME.MK = MH.MO
Xác định tâm và tính bán kính của đường tròn ngoại tiếp MEH theo R.
2.Cho nửa đường tròn tâm O, đường kính AB. Vẽ 2 tiếp tuyến Ax; By của nửa (O). Gọi C là điểm trên nửa (O) sao cho AC > BC. Tiếp tuyến tại C của nửa (O) cắt Ax; By lần lượt tại D; E.
a) Chứng minh: ABC vuông và AD + BE = ED.
b) Chứng minh: 4 điểm A; D; C; O cùng thuộc 1 đường tròn và ADO = CAB.
	c) DB cắt nửa (O) tại F và cắt AE tại I. Tia CI cắt AB tại K. Chứng minh: IC = IK.
d) Tia AF cắt tia BE tại N, gọi M là trung điểm của BN. Chứng minh: 3 điểm A; C; M thẳng hàng.
3.Cho điểm A nằm ngoài đường tròn (O; R). Vẽ hai tiếp tuyến AB, AC với 	đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O) .
a) Chứng minh rằng: OA BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC.
 Chứng minh rằng: AE. AD = AH. AO.
c) Chứng minh rằng: . 
d) Gọi r là bán kính của đường tròn nội tiếp tam giác ABC. Tính độ dài đoạn thẳng BD theo R, 
4. (3,5 điểm) Cho nửa đường tròn tâm O đường kính BC. Vẽ hai tiếp tuyến Bx và Cy của (O).Gọi A là điểm trên nửa đường tròn sao cho AB<AC. Tiếp tuyến tại A của (O) cắt Bx và Cy tại M và N
a/ Chứng minh MN = BM + CN
b/ Chứng minh OM vuông góc AB và OM song song với AC
c/ Vẽ đường cao AH của tam giác ABC. Chứng minh AH2 = AB.ACsinBcosB
d/ Đường thẳng AC cắt Bx tại D. Chứng minh OD vuông góc BN
5.Cho tam giác ABC đều nội tiếp đường tròn (O), AB = . Đường kính AD cắt BC tại H.
 Đường thẳng BO cắt tiếp tuyến tại A của đường tròn (O) ở điểm E.
 a) Chứng minh AH BC, tính độ dài AH và bán kính đường tròn (O). 
 b) Chứng minh EC là tiếp tuyến của (O) và tứ giác ABCE là hình thoi.
 c) M là điểm di động trên cung BC (không chứa A), AM cắt dây BC tại điểm N. Tìm vị trí của điểm M trên cung BC để độ dài MN đạt giá trị lớn nhất.
6.Cho đường tròn (O; R) đường kính AB và điểm M thuộc đường (O) (MA < MB, M khác A và B). Kẻ MH vuông góc với AB tại H.
Chứng minh DABM vuông. Giả sử MA = 3cm, MB = 4cm, hãy tính MH.
Tiếp tuyến tại A của đường tròn (O) cắt tia BM ở C. Gọi N là trung điểm của AC. Chứng minh đường thẳng NM là tiếp tuyến của đường tròn (O).
Tiếp tuyến tại B của (O) cắt đường thẳng MN tại D. Chứng minh NA.BD = R2.
Chứng minh OC ^ AD.
7.Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn sao cho . Vẽ tiếp tuyến AB của đường tròn (O) ( B là tiếp điểm). Vẽ dây cung BC vuông góc với OA tại H.
Chứng minh H là trung điểm của đoạn thẳng BC.
Chứng minh AC là tiếp tuyến của đường tròn (O).
Kẻ đường kính CD của (O), AD cắt đường tròn (O) tại M ( MD ). Tiếp tuyến tại M của đường tròn (O) cắt AB, AC lần lượt tại P và Q. Tính chu vi APQ theo R.
Gọi K là giao điểm của PQ với tiếp tuyến tại D của đường tròn (O). Chứng minh ba điểm K, B, C thẳng hàng.
8.Cho đường tròn tâm O bán kính R có đường kính AB. Trên tia đối của tia AB lấy một điểm E sao cho . Từ E vẽ tiếp tuyến EM của (O) với M là tiếp điểm; tiếp tuyến tại A và tại B của (O) cắt đường thẳng EM tại C và D.
	a/ Chứng minh tam giác AMB vuông và AC + BD = CD
	b/ OC cắt AM tại H và OD cắt MB tại K. Chứng minh tứ giác MHOK là hình chữ nhật 
	c/ Chứng minh : MA.OD = MB.OC	d/ Tính diện tích hình thang ABDC theo R
9.Cho đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O) , trên đường tròn (O) lấy một điểm E bất kì (E khác A; B). Tiếp tuyến tại E của đường tròn (O) cắt Ax và By lần lượt tại C, D.
a) Chứng minh: CD = AC + BD. (1đ)
b) Vẽ tại F, BE cắt AC tại K. Chứng minh: AF.AB =KE.EB (1đ)
c) EF cắt CB tại I. Chứng minh: AFC BFD. suy ra FE là tia phân giác của . (0,75đ)
d) EA cắt CF tại M. EB cắt DF tại N. Chứng minh M, I, N thẳng hàng. (0,75đ)
10.Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn ( O, R ) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. Xác định tâm và bán kính của đường tròn đó.
b) Chứng minh AO vuông góc với BC. Cho biết R = 15 cm, BC = 24cm. Tính AB, OA.
c) Chứng minh BC là tia phân giác của góc ABH
d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. Chứng minh IH = IB.
11.Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. Tính độ dài các cạnh BC, AH và số đo góc ACB (làm tròn đến độ).
12.Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E).
a) Chứng minh: bốn điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh: OA BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA.
c) Chứng minh BC trùng với tia phân giác của góc DHE.
d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, BC lần lượt tại M và N. Chứng minh: D là trung điểm của MN.
13.Cho đường tròn (O) và điểm A bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C).
Chứng minh BD vuông góc AC và AB2 = AD . AC.
Từ C vẽ dây CE // OA. BE cắt OA tại H. Chứng minh H là trung điểm BE và AE là tiếp tuyến của đường tròn (O).
Chứng minh .
Tia OA cắt đường tròn (O) tại F. Chứng minh FA . CH = HF . CA.
14.Cho đường tròn (O) đường kính BC = 2R và dây cung AB = R. 
Chứng minh ABC vuông tại A. Tính độ dài cạnh AC theo R.
Trên tia OA lấy điểm D sao cho A là trung điểm của OD. Chứng minh DB là tiếp tuyến của đường tròn (O).
Vẽ tiếp tuyến DM với đường tròn (O) (M là tiếp điểm). Chứng minh BDM là tam giác đều.
Chứng minh tứ giác AMOB là hình thoi.
15.Cho (O;R) đường kính AB và một điểm M nằm trên (O:R) với MA< MB (M khác A và M khác B). Tiếp tuyến tại M của (O;R) cắt tiếp tuyến tại A và B của (O;R) theo thứ tự ở C và D. 
Chứng tỏ tứ giác ACDB là hình thang vuông 
AD cắt (O;R) tại E, OD cắt MB tại N. 
Chứng tỏ: OD vuông góc với MB và DE.DA = DN.DO 
Đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F .Chứng tỏ tứ giác OFDB là hình chữ nhật 
Cho AM = R . Tính theo R diện tích tứ giác ACDB 
16.Cho tam giác ABC vuông tại A có AH đường cao. Biết BH = 9cm, HC = 16cm.
 Tính AH; AC; số đo góc ABC. (số đo góc làm tròn đến độ) 
17.Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC. Vẽ dây cung AD của (O) vuông góc với đường kính BC tại H. Gọi M là trung điểm cạnh OC và I trung điểm cạnh AC. Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt tia OI tại N. Trên tia ON lấy điểm S sao cho N là trung điểm cạnh OS. 
 1) Chứng minh: Tam giác ABC vuông tại A và HA = HD. (1đ)
 2) Chứng minh: MN // SC và SC là tiếp tuyến của đường tròn (O). (1đ)
 3) Gọi K là trung điểm cạnh HC, vẽ đường tròn đường kính AH cắt cạnh AK tại F. Chứng minh:. (1đ)
 4) Trên tia đối của tia BA lấy điểm E sao cho B là trung điểm cạnh AE. Chứng minh ba điểm E, H, F thẳng hàng. (0.5đ)
18.Cho đường tròn (O;R), và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B,C là các tiếp điểm) Gọi H là giao điểm của BC và OA.
 	a) Chứng minh OA BC và OH.OA=R2
	b) Kẻ đường kính BD của đường tròn (O) và đường thẳng CK BD (K BD) . Chứng minh:
	OA//CD và AC.CD=CK.AO
Gọi I là giao điểm của AD và CK. Chứng minh BIK và CHK có diện tích bằng nhau.

Tài liệu đính kèm:

  • docxTong_hop_cac_dang_bai_tap_on_tap_HKI_toan_9_rat_hay.docx