Thời gian làm bài: 120’. Câu 1: Tính : a) A = . b) B = 1+ Câu 2: a) So sánh: và . b) Chứng minh rằng: . Câu 3: Tìm số có 3 chữ số biết rằng số đó là bội của 18 và các chữ số của nó tỉ lệ theo 1:2:3 Câu 4 Cho tam giác ABC có góc B và góc C nhỏ hơn 900 . Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE ( trong đó góc ABD và góc ACE đều bằng 900 ), vẽ DI và EK cùng vuông góc với đường thẳng BC. Chứng minh rằng: a. BI=CK; EK = HC; b. BC = DI + EK. Câu 5: Tìm giá trị nhỏ nhất của biểu thức : A = ------------------------------------------ hết --------------------------------------------- Câu 1: a) Ta có: ; ; ; ; Vậy A = 1+ b) A = 1+ = = 1+ = = 115. Câu 2: a) Ta có: ; nên hay Còn < 10 .Do đó: b) ; ; ..; . Vậy: Câu 3: Gọi a,b,của là các chữ số của số có ba chữ số cần tìm . Vì mỗi chữ số a,b,của không vượt quá 9 và ba chữ số a,b,của không thể đồng thời bằng 0 , vì khi đó ta không được số có ba chữ số nên: 1 £ a+b+c £ 27 Mặt khác số phải tìm là bội của 18 nên a+b+c =9 hoặc a+b+c = 18 hoặc a+b+c=17 Theo giả thiết, ta có: Do đó: ( a+b+c) chia hết cho 6 Nên : a+b+c =18 Þ Þ a=3; b=6 ; của =9 Vì số phải tìm chia hết cho 18 nênchữ số hàng đơn vị của nó phải là số chẵn. Vậy các số phải tìm là: 396; 936. Câu 4: a) Vẽ AH ^ BC; ( H ÎBC) của DABC + hai tam giác vuông AHB và BID có: BD= AB (gt) Góc A1= góc B1( cùng phụ với góc B2) Þ DAHB= DBID ( cạnh huyền, góc nhọn) ÞAH^ BI (1) và DI= BH + Xét hai tam giác vuông AHC và CKE có: Góc A2= góc C1( cùng phụ với góc C2) AC=CE(gt) Þ DAHC= DCKB ( cạnh huyền, góc nhọn) ÞAH= CK (2) từ (1) và (2) Þ BI= CK và EK = HC. b) Ta có: DI=BH ( Chứng minh trên) tương tự: EK = HC Từ đó BC= BH +Hc= DI + EK. Câu 5: Ta có: A = = Vậy biểu thức đã cho đạt giá trị nhỏ nhất là 2000 khi x-2001 và 1-x cùng dấu, tức là : 1 £ x £ 2001 biểu điểm : Câu 1: 2 điểm . a. 1 điểm b. 1 điểm Câu 2: 2 điểm : a. 1 điểm b . 1 điểm . Câu 3 : 1,5 điểm Câu 4: 3 điểm : a. 2 điểm ; b. 1 điểm . Câu 5 : 1,5 điểm . ---------------------------------------------------------------------
Tài liệu đính kèm: