Phòng GD - ĐT đề thi học sinh giỏi năm học 2008 - 2009 Can lộc Môn: Toán lớp 8 Thời gian làm bài 120 phút Bài 1. Cho biểu thức: A = a) Rút gọn biểu thức A b) Tìm x để A - c) Tìm x để A đạt giá trị nhỏ nhất. Bài 2: a) Cho a > b > 0 và 2( a2 + b2) = 5ab Tính giá trị của biểu thức: P = b) Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh rằng a2 + 2bc > b2 + c2 Bài 3: Giải các phương trình: a) b) (12x+7)2(3x+2)(2x+1) = 3 Bài 4: Cho tam giác ABC; Điểm P nằm trong tam giác sao cho , kẻ PH . Gọi D là trung điểm của cạnh BC. Chứng minh. a) BP.KP = CP.HP b) DK = DH Bài 5: Cho hình bình hành ABCD, một đường thẳng d cắt các cạnh AB, AD tại M và K, cắt đường chéo AC tại G. Chứng minh rằng: UBND THàNH PHố Huế kỳ thi CHọN học sinh giỏi tHàNH PHố PHòNG Giáo dục và đào tạo lớp 8 thCS - năm học 2007 - 2008 Môn : Toán Đề chính thức Thời gian làm bài: 120 phút Bài 1: (2 điểm) Phân tích đa thức sau đây thành nhân tử: Bài 2: (2điểm) Giải phương trình: Bài 3: (2điểm) Căn bậc hai của 64 có thể viết dưới dạng như sau: Hỏi có tồn tại hay không các số có hai chữ số có thể viết căn bậc hai của chúng dưới dạng như trên và là một số nguyên? Hãy chỉ ra toàn bộ các số đó. Tìm số dư trong phép chia của biểu thức cho đa thức . Bài 4: (4 điểm) Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (HBC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E. Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo . Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM Tia AM cắt BC tại G. Chứng minh: . Hết Phòng Giáo dục- Đào tạo TRựC NINH đề chính thức ***** đề thi chọn học sinh giỏi cấp huyện năm học 2008 - 2009 môn: Toán 8 (Thời gian làm bài: 120 phút, không kể thời gian giao đề) Đề thi này gồm 1 trang Bài 1 (4 điểm): Cho biểu thức a) Tỡm điều kiện của x, y để giỏ trị của A được xỏc định. b) Rỳt gọn A. c) Nếu x; y là cỏc số thực làm cho A xỏc định và thoả món: 3x2 + y2 + 2x – 2y = 1, hóy tỡm tất cả cỏc giỏ trị nguyờn dương của A? Bài 2 (4 điểm): a) Giải phương trỡnh : b) Tỡm cỏc số x, y, z biết : x2 + y2 + z2 = xy + yz + zx và Bài 3 (3 điểm): Chứng minh rằng với mọi n thỡ n5 và n luụn cú chữ số tận cựng giống nhau. Bài 4 (7 điểm): Cho tam giỏc ABC vuụng tại A. Lấy một điểm M bất kỳ trờn cạnh AC. Từ C vẽ một đường thẳng vuụng gúc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. a) Chứng minh: EA.EB = ED.EC và b) Cho và . Tớnh SEBC? c) Chứng minh rằng khi điểm M di chuyển trờn cạnh AC thỡ tổng BM.BD + CM.CA cú giỏ trị khụng đổi. d) Kẻ. Gọi P, Q lần lượt là trung điểm của cỏc đoạn thẳng BH, DH. Chứng minh . Bài 5 (2 điểm): a) Chứng minh bất đẳng thức sau: (với x và y cựng dấu) b) Tỡm giỏ trị nhỏ nhất của biểu thức P = (với ) Phòng giáo dục - Đào tạo huyện Vũ thư đề chính thức Đề khảo sát chọn học sinh giỏi cấp huyện Môn: Toán – Lớp 8 năm học 2008 – 2009 Thời gian làm bài: 150 phút Bài 1: (4 điểm) 1, Cho ba số a, b, c thoả mãn , tính . 2, Cho ba số x, y, z thoả mãn . Tìm giá trị lớn nhất của . Bài 2: (2 điểm) Cho đa thức với . Chứng minh rằng tồn tại số nguyên k để . Bài 3: (4 điểm) 1, Tìm các số nguyên dương x, y thoả mãn . 2, Cho số tự nhiên , b là tổng các chữ số của a, c là tổng các chữ số của b, d là tổng các chữ số của c. Tính d. Bài 4: (3 điểm) Cho phương trình , tìm m để phương trình có nghiệm dương. Bài 5: (3 điểm) Cho hình thoi ABCD có cạnh bằng đường chéo AC, trên tia đối của tia AD lấy điểm E, đường thẳng EB cắt đường thẳng DC tại F, CE cắt à tại O. Chứng minh đồng dạng, tính . Bài 6: (3 điểm) Cho tam giác ABC, phân giác trong đỉnh A cắt BC tại D, trên các đoạn thẳng DB, DC lần lượt lấy các điểm E và F sao cho . Chứng minh rằng: . Bài 7: (2 điểm) Trên bảng có các số tự nhiên từ 1 đến 2008, người ta làm như sau lấy ra hai số bất kỳ và thay bằng hiệu của chúng, cứ làm như vậy đến khi còn một số trên bảng thì dừng lại. Có thể làm để trên bảng chỉ còn lại số 1 được không? Giải thích. ..........................................Hết.............................................. pgd &đt bỉm sơn đề thi học sinh giỏi lớp 8 trường thcs xi măng năm học 2008-2009 môn toán 2008-2009 môn toán (150 phút không kể thời gian giao đề) Câu 1(5điểm) Tìm số tự nhiên n để : A=n3-n2+n-1 là số nguyên tố. B= có giá trị là một số nguyên . D=n5-n+2 là số chính phương . (n Câu 2: (5 điểm) Chứng minh rằng : a) biết abc=1 b) Với a+b+c=0 thì a4+b4+c4=2(ab+bc+ca)2 c) Câu 3: (5 điểm) giảI các phương trình sau: a) b) 2x(8x-1)2(4x-1)=9 c) x2-y2+2x-4y-10=0 với x,y nguyên dương. câu 4: (5 điểm).Cho hình thang ABCD (AB//CD) ,O là giao điểm hai đường chéo. Qua O kẻ đường thẳng song song với AB cắt DA tại E ,cát BC tại F. chứng minh rằng : diện tích tam giác AOD bằng diện tích tam giác BOC. Chứng minh : Gọi K là điểm bất kì thuộc OE.Nêu cách dựng dường thẳng đI qua K và chia đôI diện tích tam giác DEF. -----------------------------------------------hết------------------------------------------------------------------ pgd thị xã gia nghỉa đề thi phát hiện học sinh giỏi bậc thcs năm học 2008-2009 Môn : toán ( 120 phút không kể thời gian giao đề) Bài 1: (1 đ) Cho biết a-b=7 tính giá trị của biểu thức: a(a+2)+b(b-2)-2ab Bài 2: (1 đ) Chứng minh rằng biểu rhứ sau luôn luôn dương (hoặc âm) với một giá trị của chử đã cho : -a2+a-3 Bài 3: (1 đ) Chứng minh rằng nếu một tứ giác có tâm đối xứng thì tứ giác đó là hình bình hành. Bài 4: (2 đ) Tìm giá trị nhỏ nhất của biểu thức sau: Bài 5: (2 đ) Chứng minh rằng các số tự nhiên có dạng 2p+1 trong đó p là số nguyên tố , chỉ có một số là lập phương của một số tự nhiên khác.Tìm số đó. Bài 6: (2 đ) Cho hình thang ABCD có đáy lớn AD , đường chéo AC vuông góc với cạnh bên CD, .Tính AD nếu chu vi của hình thang bằng 20 cm và góc D bằng 600. Bài 7: (2 đ) Phân tích đa thức sau thành nhân tử: a3m+2a2m+am x8+x4+1 Bài 8: (3 đ) Tìm số dư trong phép chia của biểu thức : (x+1)(x+3)(x+5)(x+7)+ 2004 cho x2+8x+1 Bài 9: (3 đ) Cho biểu thức : C= Tìm điều kiện đối với x để biểu thức C được Xác định. Rút gọn C. Với giá trị nào của x thì biểu thức C được xác định. Bài 10 (3 đ) Cho tam giác ABC vuông tại A (AC>AB) , đường cao AH. Trên tia HC lấy HD =HA, đường vuông góc với BC tại D cắt AC tại E. chứng minh AE=AB Gọi M trung điểm của BE . Tính góc AHM. ------------------------------------------------hết--------------------------------------------------------------- Phòng GD-đt vũ thư Hướng dẫn chấm môn toán 8 Bài Nội dung Điểm 1.1 Cho ba số a, b, c thoả mãn , tính . 2,00 Ta có 0,50 0,50 1,00 1.2 Cho ba số x, y, z thoả mãn . Tìm giá trị lớn nhất của . 2,00 Dấu = xảy ra khi Vậy giá trị lớn nhất của B là 3 khi x = y = z = 1 1,25 0,50 0,25 2 Cho đa thức với . Chứng minh rằng tồn tại số nguyên k để . 2,00 Với x = 2008 chọn Suy ra 1,25 0,50 0,25 3.1 Tìm các số nguyên dương x, y thoả mãn . 2,00 ă ă x, y nghuyêndương do vậy x + 5, 3y + 1 nguyên dương và lớn hơn 1. ăThoả mãn yêu cầu bài toán khi x + 5, 3y + 1 là ước lớn hơn 1 của 49 nên có: Vậy phương trình có nghiệm nguyên là x = y = 2. 0,75 0,50 0,75 3.2 Cho số tự nhiên , b là tổng các chữ số của a, c là tổng các chữ số của b, d là tổng các chữ số của c. Tính d. 2,00 mà Từ (1) và (2) suy ra d = 8. 1,00 0,75 0,25 4 Cho phương trình , tìm m để phương trình có nghiệm dương. 3,00 Điều kiện: m = 1phương trình có dạng 0 = -12 vô nghiệm. phương trình trở thành Phương trình có nghiệm dương Vậy thoả mãn yêu cầu bài toán khi . 0,25 0,75 0,25 0,50 1,00 0,25 5 Cho hình thoi ABCD có cạnh bằng đường chéo AC, trên tia đối của tia AD lấy điểm E, đường thẳng EB cắt đường thẳng DC tại F. Chứng minh đồng dạng, tính . 3,00 ă đồng dạng (g-g) ă đồng dạng (c-g-c) ă đồng dạng mà 1,00 1,00 1,00 6 Cho tam giác ABC, phân giác trong đỉnh A cắt BC tại D, trên các đoạn thẳng DB, DC lần lượt lấy các điểm E và F sao cho. Chứng minh rằng: . 3,00 ăKẻ EHAB tại H, FKAC tại K đồng dạng (g-g) ăTương tự ă (đpcm). 1,00 1,25 0,50 0,25 7 Trên bảng có các số tự nhiên từ 1 đến 2008, người ta làm như sau lấy ra hai số bất kỳ và thay bằng hiệu của chúng, cứ làm như vậy đến khi còn một số trên bảng thì dừng lại. Có thể làm để trên bảng chỉ còn lại số 1 được không? Giải thích. 2,00 Khi thay hai số a, b bởi hiệu hiệu hai số thì tính chất chẵn lẻ của tổng các số có trên bảng không đổi. Mà ; do vậy trên bảng không thể chỉ còn lại số 1. 1,00 1,00 UBND THàNH PHố Huế kỳ thi CHọN học sinh giỏi tHàNH PHố PHòNG Giáo dục và đào tạo lớp 8 thCS - năm học 2007 - 2008 Môn : Toán Đáp án và thang điểm: Bài 1 Câu Nội dung Điểm 1. 2,0 1.1 (0,75 điểm) 0.5 0,5 1.2 (1,25 điểm) 0,25 0,25 0,25 2. 2,0 2.1 (1) + Nếu : (1) (thỏa mãn điều kiện ). + Nếu : (1) (cả hai đều không bé hơn 1, nên bị loại) Vậy: Phương trình (1) có một nghiệm duy nhất là . 0,5 0,5 2.2 (2) Điều kiện để phương trình có nghiệm: (2) và . Vậy phương trình đã cho có một nghiệm 0,25 0,5 0,25 Phòng Giáo dục- Đào tạo TRựC NINH ***** đáp án và hướng dẫn chấm thi học sinh giỏi năm học 2008 - 2009 môn: Toán 8 Bài 1: (4 điểm) Điều kiện: x y; y0 (1 điểm) A = 2x(x+y) (2 điểm) Cần chỉ ra giỏ trị lớn nhất của A, từ đú tỡm được tất cả cỏc giỏ trị nguyờn dương của A + Từ (gt): 3x2 + y2 + 2x – 2y = 1 2x2 + 2xy + x2 – 2xy + y2 + 2(x – y) = 1 2x(x + y) + (x – y)2 + 2(x – y) + 1 = 2 A + (x – y + 1)2 = 2 A = 2 – (x – y + 1)2 (do (x – y + 1) (với mọi x ; y) A 2. (0,5đ) + A = 2 khi + A = 1 khi Từ đú, chỉ cần chỉ ra được một cặp giỏ trị của x và y, chẳng hạn: + Vậy A chỉ cú thể cú 2 giỏ trị nguyờn dương là: A = 1; A = 2 (0,5 điểm) Bài 2: (4 điểm) a) (1 điểm) (0,5 điểm) (0,5 điểm) b) x2 + y2 + z2 = xy + yz + zx 2x2 +2y2 + 2z2 – 2xy – 2yz – 2zx = 0 (x-y)2 + (y-z)2 + (z-x)2 = 0 (0,75 điểm) x2009 = y2009 = z2009 (0,75 điểm) Thay vào điều kiện (2) ta cú 3.z2009 = 32010 z2009 = 32009 z = 3 Vậy x = y = z = 3 (0,5 điểm) Bài 3 (3 điểm) Cần chứng minh: n5 – n 10 - Chứng minh : n5 - n 2 n5 – n = n(n2 – 1)(n2 + 1) = n(n – 1)(n + 1)(n2 + 1) 2 (vỡ n(n – 1) là tớch của hai số nguyờn liờn tiếp) (1 điểm) - Chứng minh: n5 – n 5 n5 - n = ... = n( n - 1 )( n + 1)( n2 – 4 + 5) = n( n – 1 ) (n + 1)(n – 2) ( n + 2 ) + 5n( n – 1)( n + 1 ) lý luận dẫn đến tổng trờn chia hết cho 5 (1,25 điểm) - Vỡ ( 2 ; 5 ) = 1 nờn n5 – n 2.5 tức là n5 – n 10 Suy ra n5 và n cú chữ số tận cũng giống nhau. (0,75 điểm) Bài 4: 6 điểm Câu a: 2 điểm * Chứng minh EA.EB = ED.EC (1 điểm) - Chứng minh EBD đồng dạng với ECA (gg) 0,5 điểm - Từ đó suy ra 0,5 điểm * Chứng minh (1 điểm) - Chứng minh EAD đồng dạng với ECB (cgc) 0,75 điểm - Suy ra 0,25 điểm Câu b: 1,5 điểm - Từ = 120o = 60o = 30o 0,5 điểm - Xét EDB vuông tại D có = 30o ED = EB 0,5 điểm - Lý luận cho từ đó SECB = 144 cm2 0,5 điểm Câu c: 1,5 điểm - Chứng minh BMI đồng dạng với BCD (gg) 0,5 điểm - Chứng minh CM.CA = CI.BC 0,5 điểm - Chứng minh BM.BD + CM.CA = BC2 có giá trị không đổi 0,5 điểm Cách 2: Có thể biến đổi BM.BD + CM.CA = AB2 + AC2 = BC2 Câu d: 2 điểm - Chứng minh BHD đồng dạng với DHC (gg) 0,5 điểm 0,5 điểm - Chứng minh DPB đồng dạng với CQD (cgc) 1 điểm Bài 5: (2 điểm) vỡ x, y cựng dấu nờn xy > 0, do đú (*) (**). Bất đẳng thức (**) luụn đỳng, suy ra bđt (*) đỳng (đpcm) (0,75đ) Đặt (0,25đ) Biểu thức đó cho trở thành P = t2 – 3t + 3 P = t2 – 2t – t + 2 + 1 = t(t – 2) – (t – 2) + 1 = (t – 2)(t – 1) + 1 (0,25đ) - Nếu x; y cựng dấu, theo c/m cõu a) suy ra t 2. t – 2 0 ; t – 1 > 0 . Đẳng thức xảy ra khi và chỉ khi t = 2 x = y (1) (0,25đ) - Nếu x; y trỏi dấu thỡ và t < 0 t – 1 < 0 và t – 2 < 0 > 0 P > 1 (2) (0,25đ) - Từ (1) và (2) suy ra: Với mọi x 0 ; y 0 thỡ luụn cú P 1. Đẳng thức xảy ra khi và chỉ khi x = y. Vậy giỏ trị nhỏ nhất của biểu thức P là Pm=1 khi x=y
Tài liệu đính kèm: