Đề thi chọn thi học sinh giỏi - Năm học 2016 - 2017 môn Toán 7 - Đề số 6

doc 5 trang Người đăng minhphuc19 Lượt xem 940Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi chọn thi học sinh giỏi - Năm học 2016 - 2017 môn Toán 7 - Đề số 6", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề thi chọn thi học sinh giỏi - Năm học 2016 - 2017 môn Toán 7 - Đề số 6
 Toán 7 
 Kỳ thi chọn thi HSG - năm học 2016-2017
 Thời gian : 12o phút .
Đề số 6:
Bài 1. a, Tìm để	 : M = là số nguyên.
 b, Tìm n N biết : 3-1.3n + 5.3n-1 = 162
Bài 2. : Tìm giá trị lớn nhất của biểu thức sau : P = 4- - 
Bài 3 : Tính giá trị các biểu thức sau:
 a , A = b, 	M = 	với x = 7
 Bài 4. : Tính :A = 
 Bài 5 : Tìm x, biết : a, 	 c, 5(x – 2)(x + 3) = 1
 Bài 6 : a, Tìm x, y, z biết : và. 
Bài 7 : Cho với a, b, c là các số hữu tỉ.
 	Chứng tỏ rằng: . Biết rằng 
Bài 8 . Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
 a) BA = BH 
 b) 
 c) Cho AB = 4 cm, tính chu vi tam giác DEK
---------- Hết ---------
H-dẫn giải Đề 6
Bài 3: Tìm 2 số hữu tỉ a và b biết: a + b = a . b = a : b
 Bài giải: Ta có a + b = a . b a = a . b = b(a - 1) (1)
Ta lại có: a : b = a + b (2)
Kết hợp (1) với (2) ta có: b = - 1 ; có x = . Vậy hai số cần tìm là: a = ; b = - 1
Bài 4 : Tìm x, biết:
a, 	(Þ x = - 4)
b, (x + 2)2 = 36Þ Þ Þ 
c, 5(x – 2)(x + 3) = 1
Þ 5(x – 2)(x + 3) = 50
Þ (x – 2)(x + 3) = 0 Þ Þ 
Bài tập 5: Tìm x, y, z biết. và. 
Giải: 
 Ta có: 
 Áp dụng tính chất dãy tỉ số bằng nhau ta có: 
 ; ; 
 Vậy: ; ; .
Bài tập 5b : Tìm x, y, z biết. và .
Phân tích đề bài: Cách làm giống bài 4
Giải:
 Ta có: 
 Áp dụng tính chất dãy tỉ số bằng nhau ta có: 
 ;. Vậy: ; ; 
 BÀI 6 : Tìm x, y, z biết. và .
Phân tích đề bài: Ta đưa dãy đẳng thức về dạng dãy tỉ số bằng nhau sao cho hệ số của x, y, z trong dãy tỉ số bằng nhau bằng, bằng 1. 
Cách làm chia các tích cho 12 [ vì: ] sau đó làm như ví dụ 3
Giải: Từ: 
 Áp dụng tính chất dãy tỉ số bằng nhau ta có:
 ; ; 
 Vậy: ; ; .
Bài tập 13: Cho ba tỉ số bằng nhau khi . 
Tính giá trị mỗi tỉ số đó.
Phân tích đề bài: Vì nên không thể áp dụng tính chất dãy tỉ số bằng nhau với ba tỉ số. Ta chỉ có thể áp dụng tính chất dãy tỉ số bằng nhau với hai tỉ số.
Giải: Áp dụng tính chất dãy tỉ số bằng nhau ta có:
 và: 
 Vậy mỗi tỉ số đã cho bằng có giá trị bằng -1
Bài 11. Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
 a) BA = BH 
 b) 
 c) Cho AB = 4 cm, tính chu vi tam giác DEK
HD : a) Cm ∆ABD = ∆HBD ( cạnh huyền – góc nhọn)
 b) Qua B kẻ đường thẳng vuông góc với EK , cắt EK tại I 
 Ta có : , Cm ∆HBK = ∆IBK ( cạnh huyền – cạnh góc vuông) 
 mà 	
 c)Chu vi tam giác DEK = DE + EK + KD = .. = 2.4 = 8 cm
* Từ bài ta thấy khi thì chu vi ∆DEK = 2. AB vậy nếu có chu vi ∆DEK = 2 thì ta cũng cm được . 
KT Bài 8 Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Chứng minh rằng:
 a) AE = AF
b) BE = CF
c) 
* Phân tích tìm lời giải
a) Để cm AE = AF 
 ∆ANE = ∆ ANF ( c. g . c)
Hoặc ∆AEF cân tại A 
( Có AH vừa là tia phân giác , vừa là đương cao)
b) Để cm BE = CF 
 cần tạo tam giác chứa BE( hoặc có 1 cạnh = BE) mà bằng tam giác MCF 
 + Kẻ BI // AC ∆MBI = ∆CMF( c. g . c)
 Để cm BE = CF ∆ BEI cân tại B Có ( cặp góc đồng vị ) mà vì ∆AEF cân tại A 
AB + AC = AB + AF + CF =( AB + FC) + AF mà CF = BC và AE = AF 
 2 AE = AB + AC hay 
Bài 11. Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
 a) BA = BH 
 b) 
 c) Cho AB = 4 cm, tính chu vi tam giác DEK
HD : a) Cm ∆ABD = ∆HBD ( cạnh huyền – góc nhọn)
 b) Qua B kẻ đường thẳng vuông góc với EK , cắt EK tại I 
 Ta có : , Cm ∆HBK = ∆IBK ( cạnh huyền – cạnh góc vuông) 
 mà 	
 c)Chu vi tam giác DEK = DE + EK + KD = .. = 2.4 = 8 cm
* Từ bài ta thấy khi thì chu vi ∆DEK = 2. AB vậy nếu có chu vi ∆DEK = 2 thì ta cũng cm được . 

Tài liệu đính kèm:

  • docDE_HSG_TOAN_7.doc