Đề thi chọn thi học sinh giỏi - Năm học 2016 - 2017 môn Toán 7 - Đề số 2

doc 4 trang Người đăng minhphuc19 Lượt xem 878Lượt tải 1 Download
Bạn đang xem tài liệu "Đề thi chọn thi học sinh giỏi - Năm học 2016 - 2017 môn Toán 7 - Đề số 2", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề thi chọn thi học sinh giỏi - Năm học 2016 - 2017 môn Toán 7 - Đề số 2
 Toán 7 
 Kỳ thi chọn thi HSG - năm học 2016-2017
 Thời gian : 12o phút .
Đề số 2 :
Câu 1. 
a. Thực hiện phép tính: 
b. So sánh: và .
Câu 2.
a. Tìm biết: 
b. Tìm biết: 
c. Tìm x; y; z biết: 2x = 3y; 4y = 5z và 4x - 3y + 5z = 7
Câu 3. 
a. Tìm đa thức bậc hai biết f(x) - f(x-1) = x. 
 Từ đó áp dụng tính tổng S = 1+2+3+ ....+ n.
b. Cho Chứng minh: .
Câu 4. 
Cho tam giác ABC (), đường cao AH. Gọi E; F lần lượt là điểm đối xứng của H qua AB; AC, đường thẳng EF cắt AB; AC lần lượt tại M và N. Chứng minh rằng:
a. AE = AF;
b. HA là phân giác của ;
c. CM // EH; BN // FH.
Hết./.
ĐÁP ÁN - ( Đề số 2) :
Câu
Ý
Nội dung
Điểm
Câu 1
1,5 điểm
a. 0,5 điểm
A = 	
A=
0.25
0.25
b. 1 điểm
Ta có: > = 4; > = 5
Vậy: 
0.5
0,5
Câu 2
4 điểm
a. 1 điểm
Nếu x >2 ta có: x - 2 + 2x - 3 = 2x + 1 x = 6
Nếu ta có: 2 - x + 2x - 3 = 2x + 1x = - 2 loại
Nếu x< ta có: 2 - x + 3 - 2x = 2x + 1 x = 
Vậy: x = 6 ; x = 
0.25
0.25
0.25
0.25
b. 1.5 điểm
Ta có: xy + 2x - y = 5x(y+2) - (y+2) = 3
(y+2)(x-1) = 3.1 =1.3 = (-1).(-3) = (-3).(-1)
y + 2
3
1
-1
-3
x - 1
1
3
-3
-1
X
2
4
-2
0
Y
1
-1
-3
-5
0. 5
0. 5
0.5
c. 1.5 điểm
Từ: 2x= 3y; 4y = 5z 8x = 12y = 15z
 = 
x = 12.= ; y = 12. = 1; z = 12. 
0. 5
0.5
0. 5
Câu 3 1.5 điểm
a. 0.5 điểm
Đa thức bậc hai cần tìm có dạng: (a0).
Ta có : .
Vậy đa thức cần tìm là: (c là hằng số tùy ý).
Áp dụng: 	 
+ Với x = 1 ta có : 
+ Với x = 2 ta có : 
.
+ Với x = n ta có : 
S = 1+2+3++n = = .
0.25
0.25
b. 1 điểm
2bz - 3cy = 0 (1)
3cx - az = 0 (2); Từ (1) và (2) suy ra: 
0.5
0.25
0.25
Câu 4 3 điểm
Hình vẽ 0. 5 đ
0.25
a. 1 điểm
Vì AB là trung trực của EH nên ta có: AE = AH (1)
Vì AC là trung trực của HF nên ta có: AH = AF (2)
Từ (1) và (2) suy ra: AE = AF
0.25
0.25
0. 5
b. 1 điểm
Vì MAB nên MB là phân giác MB là phân giác ngoài góc M của tam giác MNH 
Vì NAC nên NC là phân giác NC là phân giác ngoài góc N của tam giác MNH
Do MB; NC cắt nhau tại A nên HA là phân giác trong góc H của tam giác HMN hay HA là phân giác của .
0.25
0.25
0.25
0.25
c. 1 điểm
Ta có AH BC (gt) mà HM là phân giác HB là phân giác ngoài góc H của tam giác HMN
MB là phân giác ngoài góc M của tam giác HMN (cmt) NB là phân giác trong góc N của tam giác HMN
BNAC ( Hai đường phân giác của hai góc kề bù thì vuông góc với nhau). BN // HF ( cùng vuông góc với AC)
Chứng minh tương tự ta có: EH // CM
0.25
0.25
0.25
Lưu ý: Học sinh làm cách khác đúng thì vẫn cho điểm tối đa.
	Học sinh không vẽ hình hoặc vẽ hình sai thì không chấm bài hình.

Tài liệu đính kèm:

  • docDe_HSG_TOAN_7.doc