Đề tập huấn thi THPT quốc gia Toán 2017 - Mã đề 212 - Sở GD & ĐT Bắc Ninh

doc 6 trang Người đăng dothuong Ngày đăng 15/01/2021 Lượt xem 395Lượt tải 0 Download
Bạn đang xem tài liệu "Đề tập huấn thi THPT quốc gia Toán 2017 - Mã đề 212 - Sở GD & ĐT Bắc Ninh", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề tập huấn thi THPT quốc gia Toán 2017 - Mã đề 212 - Sở GD & ĐT Bắc Ninh
SỞ GD&ĐT BẮC NINH
PHÒNG KHẢO THÍ VÀ KIỂM ĐỊNH
ĐỀ TẬP HUẤN THI THPT QUỐC GIA NĂM 2017
MÔN: TOÁN
Thời gian làm bài: 90 phút; không kể thời gian giao đề.
Mã đề 212
Họ, tên thí sinh:..........................................................................
Số báo danh:...............................................................................
Câu 1: Cho lăng trụ tam giác. Gọi lần lượt là trung điểm của các cạnh Mặt phẳng chia khối lăng trụ thành hai phần, phần chứa điểm có thể tích là . Gọi là thể tích khối lăng trụ. Tính tỉ số 
A. 	B. 	C. 	D. 
Câu 2: Chọn cụm từ (hoặc từ) cho dưới đây để sau khi điền nó vào chỗ trống mệnh đề sau trở thành mệnh đề đúng:
“Số cạnh của một hình đa diện luônsố đỉnh của hình đa diện ấy.”
A. bằng.	B. nhỏ hơn.
C. lớn hơn.	D. nhỏ hơn hoặc bằng.
Câu 3: Hàm số đồng biến trên các khoảng nào sau đây?
A. .	B. .
C. .	D. và .
Câu 4: Giải bất phương trình 
A. 	B. 	C. 	D. 
Câu 5: Cho biết sự tăng dân số được ước tính theo công thức (trong đó là dân số của năm lấy làm mốc tính, là dân số sau năm, là tỉ lệ tăng dân số hàng năm). Đầu năm 2010 dân số tỉnh Bắc Ninh là 1.038.229 người tính đến đầu năm 2015 dân số của tỉnh là 1.153.600 người. Hỏi nếu tỉ lệ tăng dân số hàng năm giữ nguyên thì đầu năm 2025 dân số của tỉnh nằm trong khoảng nào?
A. 	B. 
C. 	D. 
Câu 6: Phần không gian bên trong của chai nước ngọt có hình dạng như hình bên. Biết bán kính đáy bằng bán kính cổ Thể tích phần không gian bên trong của chai nước ngọt đó bằng
A. 	B. C. D. 
Câu 7: Tìm giá trị lớn nhất của hàm số trên đoạn .
A. 	B. 	C. 	D. 
Câu 8: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi đó là hàm số nào?
A. .	B. .	C. .	D. .
Câu 9: Hàm số đồng biến trên tập nào?
A. 	B. 	C. 	D. 
Câu 10: Cho hàm số . Xét các mệnh đề sau:
	1) Hàm số đã cho đồng biến trên . 
	2) Hàm số đã cho đồng biến trên . 
	3) Hàm số đã cho nghịch biến trên từng khoảng xác định. 
	4) Hàm số đã cho đồng biến trên các khoảng và .
	Số mệnh đề đúng là
A. 	B. 	C. 	D. 
Câu 11: Một hộp giấy hình hộp chữ nhật có thể tích . Nếu tăng mỗi cạnh của hộp giấy thêm thì thể tích của hộp giấy là . Hỏi nếu tăng mỗi cạnh của hộp giấy ban đầu lên thì thể tích hộp giấy mới là:
A. .	B. 	C. .	D. .
Câu 12: Cho hàm số có đồ thị . Tìm tất cả các giá trị thực của tham số để tiếp tuyến của đồ thị tại điểm có hoành độ song song với đường thẳng 
A. .	B. Không có giá trị của .
C. .	D. .
Câu 13: Một công ty chuyên sản xuất gỗ muốn thiết kế các thùng đựng hàng bên trong dạng hình lăng trụ tứ giác đều không nắp, có thể tích là 62,. Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng sao cho tổng của diện tích xung quanh và diện tích mặt đáy là nhỏ nhất, bằng
A. 	B. 	C. 	D. 
Câu 14: Cho là hai số thực dương. Rút gọn biểu thức sau:
A. 	B. 	C. 	D. 
Câu 15: Tập nghiệm của bất phương trình là
A. 	B. 
C. 	D. 
Câu 16: Cho là các số thực dương. Viết biểu thức dưới dạng lũy thừa với số mũ hữu tỉ.
A. 	B. 	C. 	D. 
Câu 17: Thể tích của khối trụ có bán kính đáy chiều cao ?
A. .	B. .	C. .	D. .
Câu 18: Gọi là hai nghiệm của phương trình Tính giá trị 
A. 	B. 	C. 	D. 
Câu 19: Hàm số có điểm cực tiểu bằng
A. 	B. 	C. 	D. 
Câu 20: Giải phương trình 
A. 	B. 	C. 	D. 
Câu 21: Hàm số có mấy điểm cực trị?
A. .	B. .	C. .	D. .
Câu 22: Tính đạo hàm của hàm số 
A. 	B. 
C. 	D. 
Câu 23: Phương trình đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là
A. .	B. .	C. .	D. .
Câu 24: Cho hàm số xác định trên tập Trong các mệnh đề sau mệnh đề nào sai?
A. nếu với mọi thuộc và tồn tại sao cho .
B. nếu với mọi thuộc và tồn tại sao cho .
C. Nếu thì với mọi thuộc .
D. nếu với mọi thuộc và tồn tại sao cho .
Câu 25: Hàm số có bao nhiêu điểm cực trị?
A. .	B. .	C. .	D. .
Câu 26: Cho hình chóp đáy là tam giác vuông tại có hai mặt phẳng cùng vuông góc với đáy. Góc giữa với mặt đáy bằng . Tính khoảng cách từ đến mặt 
A. 	B. 	C. 	D. 2
Câu 27: Tập tất cả giá trị của để phương trình có đúng bốn nghiệm phân biệt là
A. 	B. 	C. 	D. 
Câu 28: Cho hàm số có đồ thị như hình bên. Tìm tất cả các giá trị thực của tham số để phương trình có bốn nghiệm phân biệt 
A. .	B. .	C. .	D. .
Câu 29: Tổng tất cả các nghiệm của phương trình bằng
A. 	B. 	C. 	D. 
Câu 30: Tìm tập xác định của hàm số 
A. 	B. 	C. 	D. 
Câu 31: Diện tích của hình cầu đường kính bằng là
A. .	B. .	C. .	D. .
Câu 32: Cho lăng trụ tam giác đều có tất cả các cạnh đều bằng . Tính thể tích của khối lăng trụ.
A. 	B. 	C. 	D. 
Câu 33: Tìm tất cả các giá trị thực của tham số để phương trình có hai nghiệm phân biệt.
A. .	B. .	C. .	D. .
Câu 34: Xét các mệnh đề sau:
	1) Đồ thị hàm số có một đường tiệm cận đứng và một đường tiệm cận ngang. 
	2) Đồ thị hàm số có hai đường tiệm cận ngang và một đường tiệm cận đứng. 
	3) Đồ thị hàm số có một đường tiệm cận ngang và hai đường tiệm cận đứng. 
	Số mệnh đề đúng là
A. .	B. .	C. .	D. .
Câu 35: Số giao điểm của đồ thị hàm số và đường thẳng là
A. .	B. .	C. .	D. .
Câu 36: Cho hình chóp tứ giác đều có cạnh đáy bằng Gọi điểm là giao điểm của và Biết khoảng cách từ đến bằng Tính thể tích khối chóp .
A. 	B. 	C. 	D. 
Câu 37: Cho một hình trụ có chiều cao bằng nội tiếp trong một hình cầu bán kính bằng Tính thể tích khối trụ này.
A. .	B. .	C. .	D. .
Câu 38: Khối lăng trụ tam giác có bao nhiêu mặt?
A. 3	B. 6	C. 5	D. 4
Câu 39: Cho một hình trụ có chiều cao và bán kính đều bằng Một hình vuông có hai cạnh lần lượt là hai dây cung của hai đường tròn đáy, cạnh không phải là đường sinh của hình trụ Tính cạnh của hình vuông này.
A. .	B. .	C. .	D. .
Câu 40: Cho . Hãy tính 
A. 	B. 	C. 	D. 
Câu 41: Cho hàm số với là một hằng số.Trong các khẳng định sau, khẳng định nào đúng?
A. Hàm số luôn nghịch biến trên 
B. Hàm số luôn đồng biến trên khoảng
C. Hàm số luôn đồng biến trên khoảng
D. Hàm số luôn đồng biến trên khoảng 
Câu 42: Tính giá trị của biểu thức sau 
A. 	B. 	C. 	D. 
Câu 43: Giải bất phương trình 
A. 	B. 	C. 	D. 
Câu 44: Thiết diện qua trục của hình nón là tam giác vuông cân có cạnh góc vuông bằng . Tính diện tích toàn phần của hình nón này.
A. .	B. .
C. .	D. .
Câu 45: Cho hình chóp tam giác đều có cạnh đáy bằng . Gọi lần lượt là trung điểm của . Tính thể tích khối chóp Biết mặt phẳng vuông góc với mặt phẳng 
A. 	B. 	C. 	D. 
Câu 46: Cho một hình nón có đáy là hình tròn tâm đường kính và đường cao Cho điểm thay đổi trên đoạn thẳng Mặt phẳng vuông góc với tại và cắt hình nón theo đường tròn . Khối nón có đỉnh là và đáy là hình tròn có thể tích lớn nhất bằng bao nhiêu?
A. .	B. .	C. .	D. .
Câu 47: Cho hàm số . Số nghiệm của phương trình là?
A. .	B. .	C. .	D. .
Câu 48: Cho các hàm số Trong các hàm số trên có bao nhiêu hàm số đồng biến trên tập xác định của chúng.
A. .	B. .	C. .	D. .
Câu 49: Cho hình chóp có vuông góc với mặt phẳng , . Tính diện tích hình cầu ngoại tiếp hình chóp .
A. .	B. .	C. .	D. .
Câu 50: Tìm tất cả các giá trị thực của tham số để đồ thị hàm số cắt trục hoành tại bốn điểm phân biệt có tổng bình phương các hoành độ bằng 
A. .	B. .
C. .	D. .
-----------------------------------------------
----------- HẾT ----------

Tài liệu đính kèm:

  • doc2_24_212.doc