Đề kiểm tra định kì lần I môn Toán 11

pdf 4 trang Người đăng duyenlinhkn2 Ngày đăng 06/10/2025 Lượt xem 10Lượt tải 0 Download
Bạn đang xem tài liệu "Đề kiểm tra định kì lần I môn Toán 11", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề kiểm tra định kì lần I môn Toán 11
Biên soạn: Thầy Việt – Facebook: vietmpdaklak nguyen Kiểm tra định kì Toán 11 
Cơ sở bồi dưỡng văn hóa và luyện thi THPT Quốc Gia HÒA PHÚ - : 01674634382 Trang 1 
ĐỀ KIỂM TRA ĐỊNH KÌ LẦN I 
MÔN: TOÁN 11 
 Thời gian làm bài: 90 phút 
PHẦN TRẮC NGHIỆM (5 điểm) (Khoanh tròn phương án mà em cho là đúng nhất) 
Câu 1. Chu kỳ của hàm số y = sinx là: A. 2k  kZ B. 
2
 C.  D. 2 
Câu 2. Tập xác định của hàm số y = tan2x là: A. 
2
x k   B. 
4
x k   C. 
8 2
x k   D. 
4 2
x k   
Câu 3. Tập xác định của hàm số y = cotx là: A. 
2
x k   B. 
4
x k   C. 
8 2
x k   D. x k 
Câu 4. Nghiệm của phương trình cosx = 1 là: A. x k B. 2
2
x k   C. 2x k  D. 
2
x k   
Câu 5. Nghiệm của phương trình sinx = 1
2
 là: A. 2
3
x k   B. 
6
x k   C. x k D. 2
6
x k   
Câu 6. Nghiệm của phương trình cosx = – 1
2
 là: A. 2
3
x k    B. 2
6
x k    C. 2 2
3
x k    D. 
6
x k    
Câu 7. Nghiệm của phương trình cos2x = 1
2
 là: A. 2
2
x k    B. 
4 2
x k   C. 2
3
x k    D. 2
4
x k    
Câu 8. Nghiệm của phương trình sin3x = cosx là: A. ;
8 2 4
x k x k       B. 2 ; 2
2
x k x k    
 C. ;
4
x k x k    `D. ;
2
x k x k   
Câu 9. Nghiệm của phương trình sin2x + sinx = 0 thỏa điều kiện: 
2

 < x < 
2
 A. 0x  B. x  C. x = 
3
 D. 
2
x  
Câu 10. Nghiệm của phương trình 2sin(4x –
3
 ) – 1 = 0 là: 
Biên soạn: Thầy Việt – Facebook: vietmpdaklak nguyen Kiểm tra định kì Toán 11 
Cơ sở bồi dưỡng văn hóa và luyện thi THPT Quốc Gia HÒA PHÚ - : 01674634382 Trang 2 
 A. 7;
8 2 24 2
x k x k       B. 2 ; 2
2
x k x k    C. ; 2x k x k     D. 2 ;
2
x k x k     
Câu 11. Nghiệm của phương trình cosx + sinx = 1 là: A. 2 ; 2
2
x k x k    B. ; 2
2
x k x k     C. ; 2
6
x k x k     D. ;
4
x k x k     
Câu 12. Nghiêm của phương trình sinx.cosx.cos2x = 0 là: A. x k B. .
2
x k  C. .
8
x k  D. .
4
x k  
Câu 13. Trong mặt phẳng Oxy cho điểm A(2; 5). Phép tịnh tiến theo vectơ v= (1; 2) biến A thành điểm có tọa độ là: 
A. (3; 1) B. (1; 6) C. (3; 7) D. (4; 7) 
Câu 14. Có bao nhiêu phép tịnh tiến biến một đường thẳng cho trước thành chính nó? 
A. Không có B. Chỉ có một C. Chỉ có hai D. Vô số 
Câu 15. Cho phép tịnh tiến vectơ v biến A thành A’ và M thành M’. Khi đó: 
A. ' 'AM A M   B. 2 ' 'AM A M  C. ' 'AM A M  D. 3 2 ' 'AM A M  
Câu 16. Trong mặt phẳng Oxy, cho v = (a; b). Giả sử phép tịnh tiến theo v biến điểm M(x; y) thành M’(x’;y’). Ta có biểu thức tọa độ của phép tịnh tiến theo vectơ v là: 
A. 
''x x ay y b    B. ''x x ay y b    C. ''x b x ay a y b      D. ''x b x ay a y b      
Câu 17. Trong mặt phẳng Oxy, ảnh của đường tròn: (x – 2)2 + (y – 1)2 = 16 qua phép tịnh tiến theo 
vectơ v

= (1;3) là đường tròn có phương trình: 
A. (x – 2)2 + (y – 1)2 = 16 B. (x + 2)2 + (y + 1)2 = 16 
C. (x – 3)2 + (y – 4)2 = 16 D. (x + 3)2 + (y + 4)2 = 16 
Câu 18. Cho hai đường thẳng d và d’ song song nhau. Có bao nhiêu phép tịnh tiến biến d thành d’? 
A. 1 B. 2 C. 3 D. Vô số 
Câu 19. Trong mặt phẳng với hệ trục tọa độ Oxy. Cho phép tịnh tiến theo v (1; 1), phép tịnh tiến theo 
v
 biến : x – 1 = 0 thành đường thẳng /. Khi đó phương trình của / là: 
A. x – 1 = 0 B. x – 2 = 0 C. x – y – 2 = 0 D. y – 2 = 0 
Câu 20. Trong mặt phẳng với hệ trục tọa độ Oxy. Cho phép tịnh tiến theo v và hai điểm 
   '; ; ;A A1 3 0 2 . Tọa độ vec tơ v là 
Biên soạn: Thầy Việt – Facebook: vietmpdaklak nguyen Kiểm tra định kì Toán 11 
Cơ sở bồi dưỡng văn hóa và luyện thi THPT Quốc Gia HÒA PHÚ - : 01674634382 Trang 3 
A.  ;v 1 1 B.  ;v 1 5 C.  ;v 1 5 D. ;v  
 
1 1
2 2
 
Câu 21. Trong mặt phẳng Oxy cho điểm A(3;0). Tìm tọa độ ảnh A’ của điểm A qua phép quay 
( ; )O
Q 
2
A. A’(–3; 0); B. A’(3; 0); C. A’(0; –3); D. A’(–2 3 ; 2 3 ). 
Câu 22. Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm M(2; 0) và điểm N(0; 2). Phép quay tâm O biến điểm M thành điển N, khi đó góc quay của nó là: 
A. 030 B. 030 hoặc 045 C.  090 D. 090 hoặc 0270 
Câu 23. Chọn câu sai: 
A. Qua phép quay Q(O; ) điểm O biến thành chính nó. 
B. Phép đối xứng tâm O là phép quay tâm O, góc quay –1800 
C. Phép quay tâm O góc quay 900 và phép quay tâm O góc quay –900 là hai phép quay giống nhau. 
D. Phép đối xứng tâm O là phép quay tâm O, góc quay 1800 
Câu 24. Cho tam giác đều tâm O. Hỏi có bao nhiêu phép quay tâm O góc , 0    2, biến tam giác trên thành chính nó? 
A. Một B. Hai C. Ba D. Bốn 
Câu 25. Cho hình vuông tâm O. Hỏi có bao nhiêu phép quay tâm O góc , 0    2, biến hình vuông trên thành chính nó? 
A. Một B. Hai C. Ba D. Bốn 
PHẦN TỰ LUẬN 
Câu 1 (3 điểm). Trong mặt phẳng Oxy cho điểm  ;A 2 1 , đường thẳng :d x y  2 1 0 và đường tròn 
  :C x y x y    2 2 2 4 2 0 . Xác định ảnh của  , ,A d C qua phép quay  ;Q 00 90 . 
Câu 2 (1 điểm). Cho đường thẳng d và điểm G không nằm trên d. Với mỗi điểm A trên d ta dựng tam 
giác đều ABC tâm . Tìm quỹ tích điểm B, C khi A di động trên d. 
Câu 3 (1 điểm). Hãy nêu những ví dụ về ứng dụng của phép tịnh tiến, phép quay trong đời sống, kĩ thuật ? 
Bài làm ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... 
Biên soạn: Thầy Việt – Facebook: vietmpdaklak nguyen Kiểm tra định kì Toán 11 
Cơ sở bồi dưỡng văn hóa và luyện thi THPT Quốc Gia HÒA PHÚ - : 01674634382 Trang 4 
 ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... ................................................................................................................................................................................................... 

Tài liệu đính kèm:

  • pdfde_kiem_tra_dinh_ki_lan_i_mon_toan_11.pdf