Đề khảo sát chất lượng giữa học kì I năm học 2016 – 2017 môn Toán 8 - Trường THCS Hồng Dương

doc 3 trang Người đăng minhphuc19 Lượt xem 1116Lượt tải 4 Download
Bạn đang xem tài liệu "Đề khảo sát chất lượng giữa học kì I năm học 2016 – 2017 môn Toán 8 - Trường THCS Hồng Dương", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề khảo sát chất lượng giữa học kì I năm học 2016 – 2017 môn Toán 8 - Trường THCS Hồng Dương
PHÒNG GD &ĐT THANH OAI
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HKI 
TRƯỜNG THCS HỒNG DƯƠNG
NĂM HỌC 2016 – 2017
MÔN TOÁN 8
Thời gian làm bài 60 phút
Bài 1. (3 điểm) Phân tích đa thức sau thành nhân tử
a) ;	b) x(x – y) + x2 – y2;
 c) 2x2 + 4x + 2 – 2y2;	
Bài 2. (1 điểm) Tìm x, biết:
(3x-5)2 – (x+1)2 = 0
4x3 – 36x = 0
Bài 3. (1,0 điểm) Rút gọn rồi tính giá trị biểu thức
P = tại x = và y = .
Bài 4. (4,0 điểm) (Cho tam giác ABC, đường cao AH. M là một điểm bất kì trên cạnh BC. Qua M kẻ các đường thẳng song song với AB và AC, chúng cắt các cạnh AC và AB theo thứ tự ở E và D.
	1/ Chứng minh: Tứ giác ADME là hình bình hành.
	2/ Hai đường chéo AM và DE cắt nhau tại O. Chứng minhAOH cân.
	3/ Trường hợp vuông tại A: 
a/ Tứ giác ADME là hình gì? Vì sao ?
b/ Xác định vị trí của M để đoạn thẳng DE có độ dài nhỏ nhất.
Bài 5. (1 điểm)
Tìm x,y,z thỏa mãn : 
9x2 + y2 + 2z2 – 18x + 4z - 6y + 20 = 0.
-------------Hết--------------
PHÒNG GD &ĐT THANH OAI
HƯỚNG DẪN CHẤM KHẢO SÁT GIỮA HK I
TRƯỜNG THCS HỒNG DƯƠNG
NĂM HỌC 2016– 2017
MÔN TOÁN 8
Bài 1
Nội dung làm được
Điểm 
1a)
 = = 
1
1b)
... = x(x–y)+(x–y)(x+y) = (x–y)(x+x+y) = (x–y)(2x+y)
1
1c)
= 2(x2+2x+1–y2) = ...=2[(x+1)2–y2] = 2(x+1-y)(x+1+y)
1
Bài 2
a)
 x=1 ; x=3
0,5
b)
x=0 ; x=3 ; x=-3
0.5
Bài 3
P = = 
Tại giá trị x = và y = , giá trị của P là: 
 Vậy P = tại x = và y =
0.5
0.25
0,25
Bài 4
 Vẽ hình, ghi gt-kl đúng.	
0,5
1
1/ Chứng minh: Tứ giác ADME là hình bình hành.
 MD//AE (gt); ME//AD(gt) 	
 Tứ giác ADME là hình bình hành	
0,5
0,5
2
2/ Chứng minh AOH cân.
Tứ giác ADME là hình bình hành (Câu 1)
Nên AO = (t/c hai đường chéo của hình bình hành)	
AHM vuông tại H, có HO là đường trung tuyến
Nên HO = 	
Do đó AO = HO ( = )	
Suy ra AOM cân tại O	
0,25
0,25
0,25
0,25
3
 Trong trường hợp ABC vuông tại A.
a/ Ta có: 	Tứ giác ADME là hình bình hành (Câu 1).
 	ABC vuông tại A 	
0,5
0,5
b/ Tứ giác ADME là hình chữ nhật (Câu 3a)
Nên ED = AM. (1)	
AMH vuông tại H, nên AMAH.	
Suy ra AM nhỏ nhất khi AM = AH, khi đó MH.	 (2)	
Từ (1) và (2) suy ra ED nhỏ nhất khi MH.
0,25
0,25
Bài 5
9x2 + y2 + 2z2 – 18x + 4z - 6y + 20 = 0
(9x2 – 18x + 9) + (y2 – 6y + 9) + 2(z2 + 2z + 1) = 0 
9(x - 1)2 + (y - 3)2 + 2 (z + 1)2 = 0 (*)
Do : 
Nên : (*) x = 1; y = 3; z = -1
0,25
0,25
0,25
0,25

Tài liệu đính kèm:

  • docDe_khao_sat_toan_820112016.doc