MỘT SỐ KINH NGHIỆM GIẢNG DẠY GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH I/- LỜI NÓI ĐẦU : 1. Lý do chọn đề tài : a. Cơ sở lý luận : Mục tiêu cơ bản của giáo dục nói chung, của nhà trường nói riêng là đào tạo và xây dựng thế hệ học sinh trở thành những con người mới phát triển toàn diện, có đầy đủ phẩm chất đạo đức, năng lực, trí tuệ để đáp ứng với yêu cầu thực tế hiện nay. Để thực hiện được mục tiêu đó, trước hết chúng ta phải biết áp dụng phương pháp dạy học hiện đại để bồi dưỡng cho học sinh năng lực tư duy sáng tạo, năng lực giải quyết vấn đề, rèn luyện thành nề nếp tư duy sáng tạo của người học, từng bước áp dụng các phương pháp tiên tiến, phương tiện hiện đại vào quá trình dạy học, dành thời gian tự học, tự nghiên cứu cho học sinh. Đồng thời bản thân mỗi giáo viên cũng phải tự tìm ra những phương pháp mới, khắc phục lối truyền thụ một chiều, phát huy tính tích cực, tự giác, chủ động, sáng tạo của học sinh trong các môn học, đặc biệt là môn toán. b. Cơ sở thực tiễn : Trong thời đại hiện nay, nền giáo dục của nước ta đã tiếp cận được với khoa học hiện đại. Các môn học đều đòi hỏi tư duy sáng tạo và hiện đại của học sinh. Đặc biệt là môn toán, nó đòi hỏi tư duy rất tích cực của học sinh, đòi hỏi học sinh tiếp thu kiến thức một cách chính xác, khoa học và hiện đại. Vì thế để giúp các em học tập môn toán có kết quả tốt giáo viên không chỉ có kiến thức vững vàng, một tâm hồn đầy nhiệt huyết, mà điều cần thiết là phải biết vận dụng các phương pháp giảng dạy một cách linh hoạt, sáng tạo truyền thụ kiến thức cho học sinh một cách dễ hiểu nhất. Chương trình toán rất rộng và đa dạng, các em được lĩnh hội nhiều kiến thức. Trong đó có một nội dung kiến thức theo các em trong suốt quá trình học tập là phương trình. Ngay từ những ngày mới cắp sách đến trường, học sinh đã được giải phương trình. Đó là những phương trình rất đơn giản dưới dạng điền số thích hợp vào ô trống và dần dần cao hơn là tìm số chưa biết trong một đẳng thức và cao hơn nữa các em phải làm một số bài toán phức tạp. Đến lớp 8 các đề toán trong chương trình đại số về phương trình là bài toán có lời. Các em căn cứ vào lời bài toán đã cho phải tự mình thành lập phương trình và giải phương trình. Kết quả tìm được không chỉ phụ thuộc vào kỹ năng giải phương trình mà còn phụ thuộc rất nhiều vào việc thành lập phương trình. Đó là dạng toán giải bài toán bằng cách lập phương trình. Dạng toán này tương đối khó và mới mẻ, nó mang tính trừu tượng rất cao, đòi hỏi học sinh phải có các kiến thức về số học, đại số, hình học, vật lí và phải biết tìm mối liên hệ giữa các yếu tố của bài toán đã cho với thực tiễn đời sống. Nhưng thực tế cho thấy phần đông học sinh không đáp ứng được những khả năng trên nên không giải được các dạng của bài toán lập phương trình. Chính vì thế, việc giúp cho học sinh giải được dạng toán này là một nhiệm vụ rất khó khăn đối với giáo viên. Và đó là một vấn đề trăn trở nên tôi đã nghiên cứu, tìm tòi “MỘT SỐ KINH NGHIỆM GIẢNG DẠY GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH”. 2. Sơ lược lịch sử vấn đề : Hầu hết các em học sinh ở lớp 8 đều rất ngại khi giải các dạng toán bằng cách lập phương trình. Mặc dù các em đã biết cách giải dạng toán đố ở tiểu học, các bài toán số học ở lớp 6, 7, các dạng phương trình ở lớp 8. Nhưng khi gặp bài toán giải bằng cách lập phương trình thì các em lại thấy khó mặc dù các em đã nắm được quy tắc chung (các bước giải). Có nhiều em nắm được rất rõ các bước giải nhưng lại không biết vận dụng vào giải bài tập vì các em không biết xuất phát từ đâu để tìm lời giải hoặc không biết tìm sự liên quan giữa các đại lượng để lập phương trình. Mà dạng toán này là một dạng toán cơ bản, thường xuất hiện trong các bài kiểm tra học kỳ. Nhưng đại đa số học sinh bị mất điểm ở bài này do không nắm chắc cách giải, cũng có những học sinh biết cách làm nhưng không đạt điểm tối đa vì thiếu nhiều ý. Có những em chỉ biết giải những bài tập mà giáo viên đã giải trên lớp, khi gặp những đế toán khác thì lại không giải được. Đó cũng là do một số giáo viên chỉ sửa bài tập cho học sinh trong những giờ học trên lớp mà chưa chú ý đến việc giảng dạy cho học sinh các kỹ năng giải bài toán bằng cách lập phương trình. 3. Phạm vi đề tài : Đề tài được nghiên cứu và giảng dạy cho học sinh trung học cơ sở trên cơ sở các tiết dạy về giải bài toán bằng cách lập phương trình của chương III phần đại số toán 8 tập 2. II/- THỰC TRẠNG VẤN ĐỀ : 1. Thực trạng tình hình : Việc giải các bài toán bằng cách lập phương trình đối với học sinh THCS là một việc làm mới mẻ. Đề bài cho không phải là những phương trình có sẵn mà là một đoạn văn mô tả mối quan hệ giữa các đại lượng, học sinh phải chuyển đổi được mối quan hệ giữa các đại lượng được mô tả bằng lời văn sang mối quan hệ toán học. Hơn nữa, nội dung của các bài toán này, hầu hết đều gắn bó với các hoạt động thực tế của con người, xã hội hoặc tự nhiên, Do đó trong quá trình giải học sinh thường quên, không quan tâm đến yếu tố thực tiễn dẫn đến đáp số vô lý. Một đặc thù riêng của loại toán này là hầu hết các bài toán đều được gắn liền với nội dung thực tế. Chính vì vậy mà việc chọn ẩn số thường là những số liệu có liên quan đến thực tế. Do đó khi giải toán học sinh thường mắc sai lầm và thoát ly thực tế. Từ những lý do đó mà học sinh rất ngại làm loại toán này. Mặc khác, cũng có thể trong quá trình giảng dạy do năng lực, trình độ của giáo viên mới chỉ dạy cho học sinh ở mức độ truyền thụ tinh thần của sách giáo khoa mà chưa biết phân loại toán, chưa khái quát được cách giải cho mỗi dạng. Kỹ năng phân tích tổng hợp của học sinh còn yếu, cách chọn ẩn số, mối liên hệ giữa các dữ liệu trong bài toán, dẫn đến việc học sinh rất lúng túng và gặp rất nhiều khó khăn trong vấn đề giải loại toán này. Đối với việc giải bài toán bằng cách lập phương trình các em mới được học nên chưa quen với dạng toán tự mình làm ra phương trình. Xuất phát từ thực tế đó nên kết quả học tập của các em chưa cao. Nhiều em nắm được lý thuyết rất chắc chắn nhưng khi áp dụng giải bài tập thì lại không làm được. Do vậy việc hướng dẫn giúp các em có kỹ năng lập phương trình để giải toán, ngoài việc nắm lý thuyết, thì các em phải biết vận dụng thực hành, từ đó phát triển khả năng tư duy, đồng thời tạo hứng thú cho học sinh khi học nhằm nâng cao chất lượng học tập. Xuất phát từ thực tế là các em học sinh ngại khó khi giải các bài toán, tôi thấy cần phải tạo ra cho các em có niềm yêu thích say mê học tập, luôn tự đặt ra những câu hỏi và tự mình tìm ra câu trả lời. Khi gặp các bài toán khó, phải có nghị lực, tập trung tư tưởng, tin vào khả năng của mình trong quá trình học tập. Để giúp học sinh bớt khó khăn và cảm thấy dễ dàng hơn trong việc“Giải bài toán bằng cách lập phương trình” ở lớp 8, tôi thấy cần phải hướng dẫn học sinh cách lập phương trình rồi giải phương trình một cách kỹ càng, yêu cầu học sinh có kỹ năng thực hành giải toán phần này cẩn thận. Việc hướng dẫn học sinh tìm ra phương pháp giải toán phù hợp với từng dạng bài là một vấn đề quan trọng, chúng ta phải tích cực quan tâm thường xuyên, không chỉ giúp các em nắm được lý thuyết mà còn phải tạo ra cho các em có một phương pháp học tập cho bản thân, rèn cho các em có khả năng thực hành. Nếu làm được điều đó chắc chắn kết quả học tập của các em sẽ đạt được như mong muốn. “Giải bài toán bằng cách lập phương trình” , đây là một trong những dạng toán lập phương trình cơ bản mà ở lớp 8 là tiền đề để các em được làm quen những dạng đơn giản, là cơ sở cho những bài toán phức tạp ở lớp 9. Nên đòi hỏi phải hướng dẫn cụ thể để học sinh nắm một cách chắc chắn. Chính vì vậy, giáo viên không chỉ truyền thụ cho học sinh những kiến thức như trong sách giáo khoa (SGK) mà còn dạy cho học sinh cách giải bài tập. Giáo viên khi hướng dẫn cho học sinh giải các bài toán dạng này phải dựa trên các quy tắc chung là: yêu cầu về giải một bài toán, quy tắc giải bài toán bằng cách lập phương trình, phân loại các dạng toán, làm sáng tỏ mối quan hệ giữa các đại lượng dẫn đến lập được phương trình dễ dàng. Và khi lập được phương trình rồi thì đòi hỏi phải giải cho chính xác, tìm ra kết quả rồi sau cùng mới kết luận bài toán. Đây là bước đặc biệt quan trong và khó khăn không những đối với học sinh mà còn đối với giáo viên. Do đó giáo viên không những cố gắng rèn luyện cho học sinh cách giải mà cần khuyến khích học sinh tìm hiểu cách giải để học sinh phát huy được khả năng tư duy linh hoạt, nhạy bén khi tìm lời giải bài toán, tạo được lòng say mê, sáng tạo, ngày càng tự tin, không còn tâm lý ngại ngùng đối với việc giải bài toán bằng cách lập phương trình. 2. Những thuận lợi và khó khăn : a. Thuận lợi : - Trường THCS Đông Hưng A luôn có được sự quan tâm giúp đỡ của các cấp lãnh đạo Đảng và Nhà Nước, Phòng Giáo dục và Đào tạo. Ban giám hiệu nhà trường thường xuyên quan tâm tới tất cả các hoạt động của trường, luôn tạo mọi điều kiện để giáo viên làm tốt công tác. - Nhà trường có một đội ngũ giáo viên nhiều kinh nghiệm, trẻ, khoẻ, nhiệt tình và hăng say công việc. - Hầu hết các em học sinh khá giỏi thích học bộ môn toán. b. Khó khăn : - Trường THCS Đông Hưng A là điểm trường thuộc vùng sâu, giao thông đi lại khó khăn, đa số học sinh không thể tự học ở nhà vì các em còn phải phụ giúp gia đình kiếm sống. - Một số em không có kiến thức cơ bản về toán học. - Khả năng nắm kiến thức mới của các em còn chậm. - Kỹ năng vận dụng lý thuyết vào bài tập của các em còn hạn chế. III/- GIẢI PHÁP VÀ KẾT QUẢ : 1. Giải pháp : Từ những khó khăn cơ bản của học sinh cũng như những yếu tố khách quan khác, tôi đã cố gắng tìm ra những giải pháp khắc phục nhằm đạt được hiệu quả cao trong công tác. Nắm bắt được tình hình học sinh ngại khó khi giải bài toán bằng cách lập phương trình nên tôi đã đưa ra các dạng bài tập khác nhau để phân loại cho phù hợp với khả năng nhận thức của từng đối tượng. Các bài tập ở dạng từ thấp đến cao để các em nhận thức chậm có thể làm tốt những bài toán ở mức độ trung bình, đồng thời kích thích sự tìm tòi và sáng tạo của những học sinh khá. Bên cạnh đó tôi thường xuyên hướng dẫn, sửa chữa chỗ sai cho học sinh, lắng nghe ý kiến của các em. Cho học sinh ngoài làm việc cá nhân còn phải tham gia trao đổi nhóm khi cần thiết. Tôi yêu cầu học sinh phải tự giác, tích cực, chủ động, có trách nhiệm với bản thân và tập thể. Mặc dù khả năng nhận thức và suy luận của học sinh trong mỗi lớp chưa đồng bộ nhưng khi giải bài toán bằng cách lập phương trình tất cả đều phải dựa vào một quy tắc chung: Đó là các bước giải bài toán bằng cách lập phương trình. Cụ thể như sau : * Bước 1: Lập phương trình (gồm các công việc sau): - Chọn ẩn số ( ghi rõ đơn vị ) và đặt điều kiện cho ẩn; - Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết; - Lập phương trình biểu thị mối quan hệ giữa các đại lượng. * Bước 2: Giải phương trình:Tuỳ từng phương trình mà chọn cách giải cho ngắn gọn và phù hợp. * Bước 3: Trả lời (Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không rồi kết luận). Lưu ý: Trước khi thực hiện bước 1, học sinh cần phải đọc kỹ đề bài, nhận dạng bài toán là dạng toán nào, sau đó tóm tắt đề bài rồi giải. Bước 1 có tính chất quyết định nhất. Thường đầu bài hỏi số liệu gì thì ta đặt cái đó là ẩn số. Xác định đơn vị và điều kiện của ẩn phải phù hợp với thực tế cuộc sống. Tuy đã có quy tắc trên nhưng người giáo viên trong quá trình hướng dẫn cần đảm bảo cho học sinh thực hiện theo các yêu cầu sau : * Yêu cầu 1 : Lời giải không phạm sai lầm và không có sai sót mặc dù nhỏ. Để học sinh không mắc phải sai lầm này người giáo viên phải hướng dẫn học sinh tìm hiểu đề toán. Do đó trước khi giải giáo viên phải yêu cầu học sinh đọc thật kỹ đề bài, đọc lại đề bài nhiều lần, từng câu, từng chữ trong đề bài để nắm được đề bài đã cho những gì, yêu cầu tìm những gì. Từ đó giúp học sinh hiểu kỹ đề toán và trong quá trình giảng giải không có sai sót nhỏ hoặc không phạm sai lầm. Việc hiểu kỹ nội dung đề bài là tiền đề quan trọng trong việc giải bài tập toán. Nó giúp học sinh rất nhiều trong việc chọn ẩn, đặt điều kiện của ẩn, suy luận, lập luận logic, kỹ năng tính toán, Giáo viên phải rèn cho học sinh thói quen đặt điều kiện cho ẩn và đối chiều với điều kiện của ẩn cho thích hợp để tránh việc sai sót khi kết luận bài toán. Ví dụ : Bài tập 34 SGK toán 8 tập 2 - trang 25 Mẫu số của một phân số lớn hơn tử số của nó là 3 đơn vị. Nếu tăng cả tử và mẫu của nó thêm 2 đơn vị thì được phân số mới bằng . Tìm phân số ban đầu ? Giải : Gọi tử số của phân số ban đầu là x ( điều kiện x > 0, x N) Mẫu số của phân số ban đầu là x + 3 Phân số ban đầu là Phân số mới là Theo bài ra ta có phương trình: 2. (x+2) = x +5 2x +4 = x +5 2x - x = 5 - 4 x = 1 Vậy : Phân số ban đầu là: (Sau khi tìm ra x = 1, giáo viên lưu ý học sinh đối chiếu với điều kiện, x=1 thoả mãn điều kiện bài toán nên tử số là 1, mẫu số là 1+3 = 4) * Yêu cầu 2 : Lời giải phải có căn cứ chính xác. Khi giải bài toán bằng cách lập phương trình, giáo viên cần lưu ý học sinh lập luận phải có căn cứ và phải chính xác, khoa học. Vì mỗi câu lập luận trong bài giải đều liên quan đến ẩn số và các dữ kiện đã cho trong đề toán. Do đó giáo viên cần phải giúp học sinh hiểu được đâu là ẩn số, đâu là các dữ kiện đã cho trong bài toán, để từ đó dựa vào những yếu tố và các mối liên quan giữa các đại lượng đã cho và ẩn số để lập luận và lập nên phương trình. Vì thế, trước khi hướng dẫn học sinh giải bài toán bằng cách lập phương trình, giáo viên nên hướng dẫn học sinh luyện tập các phương pháp biểu diễn sự tương quan giữa các đại lượng bởi một biểu thức chứa ẩn, trong đó ẩn số đại diện cho một đại lượng nào đó chưa biết. Học sinh có thể sử dụng cách lập bảng (có thể viết ngoài giấy nháp) để biểu diễn các đại lượng chưa biết bởi những biểu thức của ẩn cùng với các quan hệ của chúng. Ví dụ : Bài toán SGK toán 8 tập 2 - trang 27 Một xe máy khởi hành từ Hà Nội đi Nam Định với vận tốc 35 km/h. Sau đó 24 phút, trên cùng tuyến đường đó, một ô tô xuất phát từ Nam Định đi Hà Nội với vận tốc 45 km/h. Biết quãng đường Nam Định - Hà Nội dài 90 km. Hỏi sau bao lâu, kể từ khi xe máy khởi hành, hai xe gặp nhau? Giáo viên hướng dẫn học sinh phân tích bài toán : Hai đối tượng tham gia vào bài toán là ô tô và xe máy, còn các đại lượng liên quan là vận tốc (đã biết), thời gian và quãng đường đi (chưa biết). Đối với từng đối tượng, các đại lượng ấy quan hệ với nhau theo công thức s = v.t. Nếu chọn một đại lượng chưa biết làm ẩn, chẳng hạn, gọi thời gian từ lúc xe máy khởi hành đến lúc hai xe gặp nhau là x giờ, ta có thể lập bảng để biểu diễn các đại lượng trong bài toán như sau (trước hết đổi 24 phút thành giờ) : Vận tốc (km/h) Thời gian đi (h) Quãng đường đi (km) Xe máy 35 x 35x Ô tô 45 x - 45(x - ) Hai xe (đi ngược chiều) gặp nhau nghĩa là đến lúc đó tổng quãng đường hai xe đi được đúng bằng quãng đường Nam Định - Hà Nội. Do đó phương trình lập được là : 35x + 45(x - ) = 90 Lời giải : - Gọi thời gian từ lúc xe máy khởi hành đến lúc hai xe gặp nhau là x (h). Điều kiện thích hợp của x là x > - Trong thời gian đó, xe máy đi được quãng đường là 35x (km) Vì ô tô xuất phát sau xe máy 24 phút (tức là giờ) nên ô tô đi trong thời gian là x - (h) và đi được quãng đường là 45(x - ) (km) Đến lúc hai xe gặp nhau, tổng quãng đường chúng đi được đúng bằng quãng đường Nam Định - Hà Nội (dài 90 km) nên ta có phương trình 35x + 45(x - ) = 90 35x + 45x - 18 = 90 80x = 108 x = - Giá trị này phù hợp với điều kiện của ẩn. Vậy thời gian để hai xe gặp nhau là giờ, tức là 1 giờ 21 phút, kể từ lúc xe máy khởi hành. Trong ví dụ trên, nếu chọn ẩn số theo cách khác : Gọi x (km) là quãng đường từ Hà Nội đến điểm gặp nhau của hai xe. Vận tốc (km/h) Quãng đường đi (km) Thời gian đi (h) Xe máy 35 x Ô tô 45 90 - x Khi đó phương trình lập được là Qua đó ta thấy rằng khi chọn ẩn là quãng đường thì phương trình khó giải hơn so với khi chọn ẩn là thời gian. Do đó khi giải cần chú ý đến việc chọn ẩn. * Yêu cầu 3 : Lời giải phải đầy đủ và mang tính toàn diện. Giáo viên khi giảng dạy cho học sinh giải loại toán này cần phải chú ý đến tính toàn diện của bài giải. Nghĩa là lời giải của bài toán phải đầy đủ, chính xác, không thừa cũng không thiếu. Phải làm sao sử dụng hết tất cả các dữ kiện của đề bài, không bỏ sót một dữ kiện, một chi tiết nào dù là nhỏ. Và khi đã sử dụng hết tất cả các dữ kiện của bài toán, lập được phương trình, giải tìm được kết quả thì cuối cùng các em phải chú ý đối chiếu kết quả với điều kiện của ẩn hoặc có thể thử lại kết quả để trả lời, kết luận bài toán cho chính xác. Có như vậy mới thể hiện được tính đầy đủ và toàn diện nhất. Ví dụ : Bài tập 48 sách bài tập toán 8 tập 2- trang 11 Thùng thứ nhất chứa 60 gói kẹo, thùng thứ hai chứa 80 gói kẹo. Người ta lấy ra từ thùng thứ hai số gói kẹo nhiều gấp ba lần số gói kẹo lấy ra từ thùng thứ nhất. Hỏi có bao nhiêu gói kẹo được lấy ra từ thùng thứ nhất, biết rằng số gói kẹo còn lại trong thùng thứ nhất nhiều gấp hai lần số gói kẹo còn lại trong thùng thứ hai ? Giải Gọi số kẹo lấy ra từ thùng thứ nhất là x (gói, x nguyên dương, x < 60) Số kẹo lấy ra từ thùng thứ hai là 3x (gói) Số gói kẹo còn lại ở thùng thứ nhất là : 60 - x (gói) Số gói kẹo còn lại ở thùng thứ hai là : 80 - 3x (gói) Số gói kẹo còn lại trong thùng thứ nhất nhiều gấp hai lần số gói kẹo còn lại trong thùng thứ hai, nên ta có phương trình : 60 - x = 2 (80-3x) Û 60 -x = 160 - 6x Û 5x = 100 Û x = 20 (thỏa mãn điều kiện) Trả lời : Số gói kẹo lấy ra thừ thùng thứ nhất là 20 gói * Yêu cầu 4: Lời giải bài toán phải đơn giản. Bài giải phải đảm bảo được 3 yêu cầu trên không sai sót, có lập luận, mang tính toàn diện và phù hợp kiến thức, trình độ của học sinh, đại đa số học sinh hiểu và làm được Ví dụ: Bài toán cổ SGK toán 8 tập 2 - trang 24 Vừa gà vừa chó Bó lại cho tròn Ba mươi sáu con Một trăm chân chẵn. Hỏi có bao nhiêu gà, bao nhiêu chó? Hướng dẫn : Với bài toán này nếu giải như sau: Gọi số gà là x (0<x <36 0, x nguyên dương) Thì số chó sẽ là: 36 -x (con) Gà có 2 chân nên số chân gà là: 2x chân . Chó có 4 chân nên số chân chó là: 4. (36 -x) chân. Theo bài ra ta có phương trình: 2x + 4. (36 -x ) = 100 Giải phương trình ta được: x =22 thoả mãn điều kiện. Vậy: Số gà là 22 con. Số chó là: 36 - 22 = 14 (con) Thì bài toán sẽ ngắn gọn, rễ hiểu. Nhưng có học sinh giải theo cách : Gọi số chân gà là x, suy ra số chân chó là 100 - x Theo bài ra ta có phương trình: Giải phương trình cũng được kết quả là 22 con gà và 14 con chó. Nhưng đã vô hình biến thành bài giải khó hiểu hoặc không phù hợp với trình độ của học sinh. * Yêu cầu 5 : Lời giải phải trình bày khoa học. Khi giải bài toán bằng cách lập phương trình chúng ta cần lập luận dựa vào các dữ kiện của đề bài. Tuy nhiên khi lập luận trình bày lời giải cần phải có thứ tự, vấn đề nào cần lập luận trước, vấn đề nào cần lập luận sau. Giữa các bước lập luận biểu diễn sự tương quan giữa các đại lượng phải logic, chặt chẽ với nhau, bước sau là sự kế thừa của bước trước, bước trước nêu ra nhằm chủ ý cho bước sau tiếp nối. Không nên diễn giải lung tung, không có trình tự, dài dòng giữa các bước. Có như vậy thì lời giải của bài toán mới được trình bày một cách khoa học, gây hứng thú người xem, đặc biệt là gây nên sự thích thú đối với giáo viên khi chấm bài cho học sinh. Ví dụ : Bài tập 36 sách luyện giải và ôn tập toán 8 của Vũ Dương Thụy Một người đi bộ từ A đến B với vận tốc dự định 4 km/h. Sau khi đi được nửa quãng đường AB với vận tốc đó, người ấy đi bằng ô tô với vận tốc 30 km/h, do đó đã đến B sớm hơn dự định 2 giờ 10 phút. Tính chiều dài quãng đường AB. Giải: Đổi 2 giờ 10 phút = giờ Gọi chiều dài quãng đường AB là x (km), (x > 0) Thời gian người đó đi nửa quãng đường AB với vận tốc 4 km/h là (giờ) Thời gian người đó đi quãng đường còn lại với vận tốc 30 km/h là (giờ) Theo đề bài, người đó đến B trước 2 giờ 10 phút (giờ)nên ta có phương trình : Giải phương trình, tìm được x = 20 (thỏa mãn điều kiện của ẩn) Trả lời : Quãng đường AB dài 20 km Trên
Tài liệu đính kèm: