Phiếu bài tập chương I môn: Toán đại số lớp: 10

doc 3 trang Người đăng minhphuc19 Lượt xem 1252Lượt tải 0 Download
Bạn đang xem tài liệu "Phiếu bài tập chương I môn: Toán đại số lớp: 10", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Phiếu bài tập chương I môn: Toán đại số lớp: 10
 SCELL
ĐỀ MINH HỌA
PHIẾU BÀI TẬP CHƯƠNG I
Môn: TOÁN ĐẠI SỐ – LỚP: 10
Trong các câu dưới đây, câu nào là mệnh đề, câu nào là mệnh đề chứa biến:
	a) Số 11 là số chẵn.	b) Bạn có chăm học không ? 	
	c) Huế là một thành phố của Việt Nam. 	d) 2x + 3 là một số nguyên dương.
	e) .	f) 4 + x = 3.
	g) Hãy trả lời câu hỏi này!.	h) Paris là thủ đô nước Ý.	
	i) Phương trình có nghiệm.	k) 13 là một số nguyên tố.
Trong các mệnh đề sau, mệnh đề nào là đúng ? Giải thích ?
	a) Nếu a chia hết cho 9 thì a chia hết cho 3.	b) Nếu thì .
	c) Nếu a chia hết cho 3 thì a chia hết cho 6.	d) Số lớn hơn 2 và nhỏ hơn 4.
	e) 2 và 3 là hai số nguyên tố cùng nhau.	f) 81 là một số chính phương.
	g) 5 > 3 hoặc 5 < 3.	h) Số 15 chia hết cho 4 hoặc cho 5.
Trong các mệnh đề sau, mệnh đề nào là đúng ? Giải thích ?
	a) Hai tam giác bằng nhau khi và chỉ khi chúng có diện tích bằng nhau.
	b) Hai tam giác bằng nhau khi và chỉ khi chúng đồng dạng và có một cạnh bằng nhau.
 	c) Một tam giác là tam giác đều khi và chỉ khi chúng có hai đường trung tuyến bằng nhau và có một góc bằng .
	d) Một tam giác là tam giác vuông khi và chỉ khi nó có một góc bằng tổng của hai góc còn lại.
	e) Đường tròn có một tâm đối xứng và một trục đối xứng.
	f) Hình chữ nhật có hai trục đối xứng.
	g) Một tứ giác là hình thoi khi và chỉ khi nó có hai đường chéo vuông góc với nhau.
	h) Một tứ giác nội tiếp được đường tròn khi và chỉ khi nó có hai góc vuông. 
Trong các mệnh đề sau, mệnh đề nào là đúng ? Giải thích ? Phát biểu các mệnh đề đó thành lời:
	a) .	b) 	c) .
	d) .	e) 	f) 
	g) .	h) 	i) 
	k) là hợp số.	 	l) không chia hết cho 3.
	m) là số lẻ.	n) chia hết cho 6.
Điền vào chỗ trống từ nối "và" hay "hoặc" để được mệnh đề đúng:
	a) .	b) . 	
	c) 	d) .
	e) Một số chia hết cho 6 khi và chỉ khi nó chia hết cho 2 . cho 3.
	f) Một số chia hết cho 5 khi và chỉ khi chữ số tận cùng của nó bằng 0 . bằng 5.
Cho mệnh đề chứa biến P(x), với x Î R. Tìm x để P(x) là mệnh đề đúng:
	a) 	b) 	c) 
	d) 	e) 	f) 
Nêu mệnh đề phủ định của các mệnh đề sau:
	a) Số tự nhiên n chia hết cho 2 và cho 3. 	
	b) Số tự nhiên n có chữ số tận cùng bằng 0 hoặc bằng 5.	
	c) Tứ giác T có hai cạnh đối vừa song song vừa bằng nhau.
	d) Số tự nhiên n có ước số bằng 1 và bằng n. 
Nêu mệnh đề phủ định của các mệnh đề sau:
	a) 	.	b) . 	
	c) .	d) .	
	e) .	f) .	
	g) không chia hết cho 3.	h) là số nguyên tố.
	i) chia hết cho 2.	k) là số lẻ.
Phát biểu các mệnh đề sau, bằng cách sử dụng khái niệm "điều kiện cần", "điều kiện đủ":
	a) Nếu một số tự nhiên có chữ số tận cùng là chữ số 5 thì nó chia hết cho 5.	
	b) Nếu thì một trong hai số a và b phải dương. 	
	c) Nếu một số tự nhiên chia hết cho 6 thì nó chia hết cho 3.
	d) Nếu thì .
	e) Nếu a và b cùng chia hết cho c thì a + b chia hết cho c.
Phát biểu các mệnh đề sau, bằng cách sử dụng khái niệm "điều kiện cần", "điều kiện đủ":
	a) Trong mặt phẳng, nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng ấy song song với nhau.	
	b) Nếu hai tam giác bằng nhau thì chúng có diện tích bằng nhau. 	
	c) Nếu tứ giác T là một hình thoi thì nó có hai đường chéo vuông góc với nhau.
	d) Nếu tứ giác H là một hình chữ nhật thì nó có ba góc vuông.
	e) Nếu tam giác K đều thì nó có hai góc bằng nhau. 
Phát biểu các mệnh đề sau, bằng cách sử dụng khái niệm "điều kiện cần và đủ":
	a) Một tam giác là vuông khi và chỉ khi nó có một góc bằng tổng hai góc còn lại.	
	b) Một tứ giác là hình chữ nhật khi và chỉ khi nó có ba góc vuông. 	
	c) Một tứ giác là nội tiếp được trong đường tròn khi và chỉ khi nó có hai góc đối bù nhau.
	d) Một số chia hết cho 6 khi và chỉ khi nó chia hết cho 2 và cho 3.
	e) Số tự nhiên n là số lẻ khi và chỉ khi là số lẻ. 
Chứng minh các mệnh đề sau bằng phương pháp phản chứng:
	a) Nếu thì một trong hai số a và b nhỏ hơn 1.	
	b) Một tam giác không phải là tam giác đều thì nó có ít nhất một góc nhỏ hơn .
	c) Nếu và thì .
	d) Nếu bình phương của một số tự nhiên n là một số chẵn thì n cũng là một số chẵn.
	e) Nếu tích của hai số tự nhiên là một số lẻ thì tổng của chúng là một số chẵn.
	f) Nếu một tứ giác có tổng các góc đối diện bằng hai góc vuông thì tứ giác đó nội tiếp được đường tròn.
	g) Nếu thì x = 0 và y = 0.
Bài 13. Viết mỗi tập hợp sau bằng cách liệt kê các phần tử của nó:
	A = 	B = 
	C = 	D = 
	E = 	F = 
	G = 	H = 
Bài 14. Viết mỗi tập hợp sau bằng cách chỉ rõ tính chất đặc trưng cho các phần tử của nó:
	A = 	B = 	C = 
	D = 	E = 	F = 
	G = Tập tất cả các điểm thuộc đường trung trực của đoạn thẳng AB.
	H = Tập tất cả các điểm thuộc đường tròn tâm I cho trước và có bán kính bằng 5.
Bài 15. Trong các tập hợp sau đây, tập nào là tập rỗng:
	A = 	B = 	C = 
	D = 	E = 	F = 
Bài 16. Tìm tất cả các tập con, các tập con gồm hai phần tử của các tập hợp sau:
	A = 	B = 	C = 
	D = 	E = 
Bài 17. Trong các tập hợp sau, tập nào là tập con của tập nào?
	a) A = ,	B = ,	C = ,	D = .
	b) A = Tập các ước số tự nhiên của 6 ;	B = Tập các ước số tự nhiên của 12.
	c) A = Tập các hình bình hành;	B = Tập các hình chữ nhật;
	 C = Tập các hình thoi;	D = Tập các hình vuông.
	d) A = Tập các tam giác cân;	B = Tập các tam giác đều;
	 C = Tập các tam giác vuông;	D = Tập các tam giác vuông cân.
Bài 18. Tìm A Ç B, A È B, A \ B, B \ A với: 
	a) A = {2, 4, 7, 8, 9, 12}, B = {2, 8, 9, 12}	
	b) A = {2, 4, 6, 9}, B = {1, 2, 3, 4}
	c) A = , B = .
	d) A = Tập các ước số của 12, B = Tập các ước số của 18.
	e) A = , B = Tập các số nguyên tố có một chữ số.
	f) A = , B = .
	g) A = , B = .
Bài 19. Tìm tất cả các tập hợp X sao cho:
	a) {1, 2} Ì X Ì {1, 2, 3, 4, 5}.	b) {1, 2} È X = {1, 2, 3, 4}.
	c) X Ì {1, 2, 3, 4}, X Ì {0, 2, 4, 6, 8}	d) 
Bài 20. Tìm các tập hợp A, B sao cho:
	a) AÇB = {0;1;2;3;4}, A\B = {–3; –2}, B\A = {6; 9; 10}.
	b) AÇB = {1;2;3}, A\B = {4; 5}, B\A = {6; 9}.
Bài 21. Tìm A Ç B, A È B, A \ B, B \ A với:
	a) A = [–4; 4], B = [1; 7]	b) A = [–4; –2], B = (3; 7]
	c) A = [–4; –2], B = (3; 7)	d) A = (–¥; –2], B = [3; +¥)
	e) A = [3; +¥), B = (0; 4)	f) A = (1; 4), B = (2; 6)
Bài 22. Tìm A È B È C, A Ç B Ç C với:
	a) A = [1; 4], B = (2; 6), C = (1; 2)	b) A = (–¥; –2], B = [3; +¥), C = (0; 4)
	c) A = [0; 4], B = (1; 5), C = (−3; 1]	d) A = (−¥; 2], B = [2; +¥), C = (0; 3)
	e) A = (−5; 1], B = [3; +¥), C = (−¥; −2)
Bài 23. Chứng minh rằng:
	a) Nếu A Ì B thì A Ç B = A.	b) Nếu A Ì C và B Ì C thì (A È B) Ì C.
	c) Nếu A È B = A Ç B thì A = B	d) Nếu A Ì B và A Ì C thì A Ì (B Ç C).

Tài liệu đính kèm:

  • docDai_so_10_Chuong_1.doc