Họ và tên:. Lớp: ÔN TẬP TOÁN 6 HK1 I. TẬP HỢP Bài 1: Viết tập hợp A các số tự nhiên lớn hơn 4 và không vượt quá 7 bằng hai cách. Tập hợp các B số tự nhiên khác 0 và không vượt quá 12 bằng hai cách. Tìm giao của tập hợp A và B (ở câu a và câu b) Bài 2: Viết tập hợp sau bằng cách liệt kê các phần tử. A = {x Î Nô10 < x <16} B = {x Î Nô10 ≤ x ≤ 20 C = {x Î Nô5 < x ≤ 10} D = {x Î Nô10 < x ≤ 100} E = {x Î Nô2982 < x <2987} F = {x Î N*ôx < 10} G = {x Î N*ôx ≤ 4} H = {x Î N*ôx ≤ 100} Bài 3: Cho tập hợp A = {3; 7}. Các số sau thuộc hay không thuộc tập A: a. 3 ... A. b. 5 ... A. Bài 4: Cho tập hợp A = {3; 7}, B = {1; 3; 7}. a. Điền các kí hiệu Î, Ï, Ì thích hợp vào chỗ trống sau: 7 ... A; 1 ... A; 7 ... B; A ... B. b. Tập hợp B có bao nhiêu phần tử? II. THỰC HIỆN PHÉP TÍNH Bài 1: Thực hiện phép tính: 3.52 + 15.22 – 26:2 53.2 – 100 : 4 + 23.5 62 : 9 + 50.2 – 33.3 32.5 + 23.10 – 81:3 513 : 510 – 25.22 20 : 22 + 59 : 58 100 : 52 + 7.32 84 : 4 + 39 : 37 + 50 29 – [16 + 3.(51 – 49)] (519 : 517 + 3) : 7 79 : 77 – 32 + 23.52 1200 : 2 + 62.21 + 18 59 : 57 + 70 : 14 – 20 32.5 – 22.7 + 83 59 : 57 + 12.3 + 70 5.22 + 98:72 311 : 39 – 147 : 72 295 – (31 – 22.5)2 151 – 291 : 288 + 12.3 238 : 236 + 51.32 - 72 791 : 789 + 5.52 – 124 4.15 + 28:7 – 620:618 (32 + 23.5) : 7 1125 : 1123 – 35 : (110 + 23) – 60 520 : (515.6 + 515.19) 718 : 716 +22.33 Bài 2: Thực hiện phép tính: 47 – [(45.24 – 52.12):14] 50 – [(20 – 23) : 2 + 34] 102 – [60 : (56 : 54 – 3.5)] 50 – [(50 – 23.5):2 + 3] 10 – [(82 – 48).5 + (23.10 + 8)] : 28 8697 – [37 : 35 + 2(13 – 3)] 2011 + 5[300 – (17 – 7)2] 695 – [200 + (11 – 1)2] 129 – 5[29 – (6 – 1)2] 2010 – 2000 : [486 – 2(72 – 6)] 2345 – 1000 : [19 – 2(21 – 18)2] 128 – [68 + 8(37 – 35)2] : 4 568 – {5[143 – (4 – 1)2] + 10} : 10 107 – {38 + [7.32 – 24 : 6+(9 – 7)3]}:15 307 – [(180 – 160) : 22 + 9] : 2 205 – [1200 – (42 – 2.3)3] : 40 177 :[2.(42 – 9) + 32(15 – 10)] [(25 – 22.3) + (32.4 + 16)]: 5 125(28 + 72) – 25(32.4 + 64) 500 – {5[409 – (23.3 – 21)2] + 103} : 15 III. TÌM X Bài 1: Tìm x: 71 – (33 + x) = 26 (x + 73) – 26 = 76 45 – (x + 9) = 6 89 – (73 – x) = 20 (x + 7) – 25 = 13 198 – (x + 4) = 120 140 : (x – 8) = 7 4(x + 41) = 400 11(x – 9) = 77 5(x – 9) = 350 2x – 49 = 5.32 200 – (2x + 6) = 43 2(x- 51) = 2.23 + 20 450 : (x – 19) = 50 4(x – 3) = 72 – 110 135 – 5(x + 4) = 35 25 + 3(x – 8) = 106 32(x + 4) – 52 = 5.22 Bài 2: Tìm x: a) 156 – (x+ 61) = 82 b) (x-35) -120 = 0 c) 124 + (118 – x) = 217 d) 7x – 8 = 713 e) x- 36:18 = 12 f) (x- 36):18 = 12 g) (x-47) -115 = 0 5x + x = 39 – 311:39 7x – x = 521 : 519 + 3.22 - 70 7x – 2x = 617: 615 + 44 : 11 0 : x = 0 3x = 9 4x = 64 (2+x)2 = 16 315 + (146 – x) = 401 (6x – 39 ) : 3 = 201 23 + 3x = 56 : 53 9x- 1 = 9 x4 = 16 2x : 25 = 1 2x+1.22014 = 22015 Bài 3: Tìm x: a) x - 7 = -5 b) 128 - 3 . ( x+4) = 23 c) [ (6x - 39) : 7 ] . 4 = 12 d)( x: 3 - 4) . 5 = 15 | x + 2| = 0 | x - 5| = |-7| | x - 3 | = 7 - ( -2) ( 7 - x) - ( 25 + 7 ) = - 25 . |x| – 5 = 3 ( 3x - 24 ) . 73 = 2 . 74 x - [ 42 + (-28)] = -8 | x - 3| = |5| + | -7| 15 – 2|x| = 13 4 - ( 7 - x) = x - ( 13 -4) IV. TÍNH NHANH 58.75 + 58.50 – 58.25 27.39 + 27.63 – 2.27 128.46 + 128.32 + 128.22 66.25 + 5.66 + 66.14 + 33.66 12.35 + 35.182 – 35.94 48.19 + 48.115 + 134.52 27.121 – 87.27 + 73.34 125.98 – 125.46 – 52.25 136.23 + 136.17 – 40.36 17.93 + 116.83 + 17.23 35.23 + 35.41 + 64.65 29.87 – 29.23 + 64.71 19.27 + 47.81 + 19.20 87.23 + 13.93 + 70.87 V. TÍNH TỔNG QUY LUẬT Bài 1: Tính tổng: S1 = 1 + 2 + 3 ++ 999 S2 = 10 + 12 + 14 + + 2010 S3 = 21 + 23 + 25 + + 1001 S5 = 1 + 4 + 7 + +79 S6 = 15 + 17 + 19 + 21 + + 151 + 153 + 155 S7 = 15 + 25 + 35 + +115 S4 = 24 + 25 + 26 + + 125 + 126 VI. DẤU HIỆU CHIA HẾT Bài 1: Trong các số: 4827; 5670; 6915; 2007. Số nào chia hết cho 3 mà không chia hết cho 9? Số nào chia hết cho cả 2; 3; 5 và 9? Bài 2: Trong các số: 825; 9180; 21780. a) Số nào chia hết cho 3 mà không chia hết cho 9? b) Số nào chia hết cho cả 2; 3; 5 và 9? Bài 3: Thay * bằng các chữ số nào để được số *79* chia hết cho cả 2 ,3, 5,9. Thay * bằng các chữ số nào để được số *714 chia hết cho 3 nhưng không chia hết cho 9. Bài 4: Tìm tập hợp các số tự nhiên n vừa chia hết cho 2, vừa chia hết cho 5 và 953 < n < 984. VII. ƯỚC. ƯỚC CHUNG LỚN NHẤT Bài 1: Tìm ƯCLN của: 12 và 18 12 và 10 24 và 48 300 và 280 32 và 192 18 và 42 28 và 48 24; 36 và 60 12; 15 và 10 24; 16 và 8 9 và 81 11 và 15 1 và 10 150 và 84 46 và 138 16; 32 và 112 14; 82 và 124 25; 55 và 75 150; 84 và 30 24; 36 và 160 Bài 2: Tìm số tự nhiên x biết: 45x 24x ; 36x ; 160x và x lớn nhất. 15x ; 20x ; 35x và x lớn nhất. 10(x+1) và x>5 x Î Ư(20) và 0<x<10. x Î Ư(30) và 5<x≤12. 91x ; 26x và 10<x<30. 150x; 84x ; 30x và 0<x<16. Bài 3: Tìm số tự nhiên x biết: 6(x – 1) 5(x + 1) 15(2x + 1) 10(3x+1) 12(x +3) 14(2x) 2x + 16x + 1 x + 11x + 1 Bµi 4: Mét ®éi y tÕ cã 24 b¸c sü vµ 108 y t¸. Cã thÓ chia ®éi y tÕ ®ã nhiÒu nhÊt thµnh mÊy tæ ®Ó sè b¸c sü vµ y t¸ ®îc chia ®Òu cho c¸c tæ? Bài 5: Lớp 6A có 18 bạn nam và 24 bạn nữ. Trong một buổi sinh hoạt lớp, bạn lớp trưởng dự kiến chia các bạn thành từng nhóm sao cho số bạn nam trong mỗi nhóm đều bằng nhau và số bạn nữ cũng vậy. Hỏi lớp có thể chia được nhiều nhất bao nhiêu nhóm? Khi đó mỗi nhóm có bao nhiêu bạn nam, bao nhiêu bạn nữ? Bài 6: Học sinh khối 6 có 195 nam và 117 nữ tham gia lao động. Thầy phụ trách muốn chia ra thành các tổ sao cho số nam và nữ mỗi tổ đều bằng nhau. Hỏi có thể chia nhiều nhất mấy tổ? Mỗi tổ có bao nhiêu nam, bao nhiêu nữ? Bài 7: Cô Lan phụ trách đội cần chia số trái cây trong đó 80 quả cam; 36 quả quýt và 104 quả mận vào các đĩa bánh kẹo trung thu sao cho số quả mỗi loại trong các đĩa là bằng nhau. Hỏi có thể chia thành nhiều nhất bao nhiêu đĩa? Khi đó mỗi đĩa có bao nhiêu trái cây mỗi loại? Bài 8:Bình muốn cắt một tấm bìa hình chữ nhật có kích thước bằng 112 cm và 140 cm. Bình muốn cắt thành các mảnh nhỏ hình vuông bằng nhau sao cho tấm bìa được cắt hết không còn mảnh nào. Tính độ dài cạnh hình vuông có số đo là số đo tự nhiên( đơn vị đo là cm nhỏ hơn 20cm và lớn hơn 10 cm) VIII.BỘI, BỘI CHUNG NHỎ NHẤT Bµi 1: T×m BCNN cña: 24 vµ 10 9 vµ 24 14; 21 vµ 56 8; 12 vµ 15 12 vµ 52 18; 24 vµ 30 6; 8 vµ 10 9; 24 vµ 35 Bài 2: T×m sè tù nhiªn x x4; x7; x8 vµ x nhá nhÊt khác 0 x2; x3; x5; x7 vµ x nhá nhÊt khác 0 x Î BC(9,8) vµ x nhá nhÊt khác 0 x Î BC(6,4) vµ 16 ≤ x ≤50. x10; x15 vµ x <100 x20; x35 vµ x<500 x4; x6 vµ 0 < x <50 x:12; x18 vµ x < 250 Bµi 3: Sè häc sinh khèi 6 cña trêng lµ mét sè tù nhiªn cã ba ch÷ sè. Mçi khi xÕp hµng 18, hµng 21, hµng 24 ®Òu võa ®ñ hµng. T×m sè häc sinh khèi 6 cña trêng ®ã. Bµi 4: Häc sinh cña mét trêng häc khi xÕp hµng 3, hµng 4, hµng 7, hµng 9 ®Òu võa ®ñ hµng. T×m sè häc sinh cña trêng, cho biÕt sè häc sinh cña trêng trong kho¶ng tõ 1600 ®Õn 2000 häc sinh. Bµi 5: Mét tñ s¸ch khi xÕp thµnh tõng bã 8 cuèn, 12 cuèn, 15 cuèn ®Òu võa ®ñ bã. Cho biÕt sè s¸ch trong kho¶ng tõ 400 ®Õn 500 cuèn. Tìm sè s¸ch ®ã. Bµi 6: B¹n Lan vµ Minh Thêng ®Õn th viÖn ®äc s¸ch. Lan cø 8 ngµy l¹i ®Õn th viÖn mét lÇn. Minh cø 10 ngµy l¹i ®Õn th viÖn mét lÇn. LÇn ®Çu c¶ hai b¹n cïng ®Õn th viÖn vµo mét ngµy. Hái sau Ýt nhÊt bao nhiªu ngµy th× hai b¹n l¹i cïng ®Õn th viÖn Bµi 7: Cã ba chång s¸ch: To¸n, ¢m nh¹c, V¨n. Mçi chång chØ gåm mét lo¹i s¸ch. Mçi cuèn To¸n 15 mm, Mçi cuèn ¢m nh¹c dµy 6mm, mçi cuèn V¨n dµy 8 mm. ngêi ta xÕp sao cho 3 chång s¸ch b»ng nhau. TÝnh chiÒu cao nhá nhÊt cña 3 chång s¸ch ®ã. Bµi 8: B¹n Huy, Hïng, Uyªn ®Õn ch¬i c©u l¹c bé thÓ dôc ®Òu ®Æn. Huy cø 12 ngµy ®Õn mét lÇn; Hïng cø 6 ngµy ®Õn mét lÇn vµ uyªn 8 ngµy ®Õn mét lÇn. Hái sau bao l©u n÷a th× 3 b¹n l¹i gÆp nhau ë c©u l¹c bé lµn thø hai? Bµi 9: Sè häc sinh khèi 6 cña trêng khi xÕp thµnh 12 hµng, 15 hµng, hay 18 hµng ®Òu d ra 9 häc sinh. Hái sè häc sinh khèi 6 trêng ®ã lµ bao nhiªu? BiÕt r»ng sè ®ã lín h¬n 300 vµ nhá h¬n 400. Bµi 10: Sè häc sinh líp 6 cña QuËn 11 kho¶ng tõ 4000 ®Õn 4500 em khi xÕp thµnh hµng 22 hoÆc 24 hoÆc 32 th× ®Òu d 4 em. Hái QuËn 11 cã bao nhiªu häc sinh khèi 6? Bµi 11: Học sinh lớp 6C khi xếp hàng 2, hàng 3 đều thừa 1 người, hàng 4, hàng 8 đều thừa 3 người. Biết số học sinh lớp đó trong khoảng từ 35 đến 60. Tính số học sinh lớp 6C. Bµi 12: Học sinh lớp 6C khi xếp hàng 2, hàng 3, hàng 4, hàng 8 đều thiếu 1 người. Biết số học sinh lớp đó trong khoảng từ 35 đến 60. Tính số học sinh lớp 6C. Bµi 13: Học sinh lớp 6C khi xếp hàng 2, hàng 3 thì vừa đủ hàng, nhưng xếp hàng 4 thì thừa 2 người, xếp hàng 8 thì thừa 6 người. Biết số học sinh lớp đó trong khoảng từ 35 đến 60. Tính số học sinh lớp 6C. IX. CỘNG, TRỪ TRONG TẬP HỢP CÁC SỐ NGUYÊN Bài 1: Tính giá trị của biểu thức sau: 2763 + 152 (-7) + (-14) (-35) + (-9) (-5) + (-248) (-23) + 105 78 + (-123) 23 + (-13) (-23) + 13 26 + (-6) ô-18ô + (-12) 17 + ô-33ô (– 20) + ô-88ô ô-3ô + ô5ô ô-37ô + ô15ô ô-37ô + (-ô15ô) 80 + (-220) (-23) + (-13) (-26) + (-6) 12 – 34 -23 – 47 31 – (-23) -9 – (-5) 6 – (8 – 17) 19 + (23 – 33) (-12 – 44) + (-3) 4 – (-15) -29 – 23 99 – [109 + (-9)] (-75) + 50 (-75) + (-50) (-ô-32ô) + ô5ô (-ô-22ô)+ (-ô16ô) (-23) + 13 + ( - 17) + 57 14 + 6 + (-9) + (-14) (-123) +ô-13ô+ (-7) ô0ô+ô45ô+(-ô-455)ô+ô-796ô Bài 2: Tìm x Î Z: -7 < x < -1 -3 < x < 3 -1 ≤ x ≤ 6 -5 ≤ x < 6 Bài 3: Tìm tổng của tất cả các số nguyên thỏa mãn: -4 < x < 3 -5 < x < 5 -10 < x < 6 -1 ≤ x ≤ 4 -6 < x ≤ 4 -4 < x < 4 -5 < x < 2 -6 < x < 0 ôxô< 4 ôxô≤ 4 ôxô< 6 -6 < x < 5 Bài 4: Bỏ dấu ngoặc rồi tính: a. (15 + 37) + (52 – 37 – 17) b. (38 – 42 + 14) – (25 – 27 – 15) c. –(21 – 32) – (–12 + 32) d. –(12 + 21 – 23) – (23 – 21 + 10) e. (57 – 725) – (605 – 53) f. (55 + 45 + 15) – (15 – 55 + 45) HÌNH HỌC ĐỀ CƯƠNG ÔN TẬP HÌNH HỌC LỚP 6 HỌC KÌ I d m n A B C D Bài 1: Xem hình vẽ rồi cho biết: a. Các cặp đường thẳng cắt nhau; b. Hai đường thẳng song song; c. Các bộ ba điểm thẳng hàng; d. Điểm nằm giữa hai điểm khác. Bài 2: Hãy vẽ ba điểm O, A, B thẳng hàng sao cho mỗi điểm A, B không nằm giữa hai điểm còn lại, rồi cho biết trong các câu sau, câu nào đúng, câu nào sai? a. Điểm O nằm giữa hai điểm A và B. b. Hai điểm O và B nằm cùng phía đối với điểm A. c. Hai điểm A và B nằm cùng phía đối với điểm O. d. Hai điểm A và O nằm cùng phía đối với điểm B. Bài 3: Lấy bốn điểm A, B, C, D trong đó không có ba điểm nào thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm. Có tất cả bao nhiêu đường thẳng? Đó là những đường thẳng nào? Bài 4: Vẽ tia Ox rồi lấy hai điểm M và N thuộc tia này. Hỏi: a. Hai điểm M và N nằm cùng phía hay khác phía đối với điểm O? b. Trong ba điểm O, M, N điểm nào không thể nằm giữa hai điểm còn lại? Bài 5: Xem hình vẽ rồi cho biết: x y A B a. Những cặp tia đối nhau? b. Những cặp tia trùng nhau? c. Những cặp tia nào không đối nhau, không trùng nhau? Bài 6: Trên đường thẳng xy lấy điểm O. Vẽ điểm M thuộc Ox, điểm N thuộc Oy (M, N khác O). Có thể khẳng định điểm O nằm giữa hai điểm M và N không? C D A B Bài 7: Số đoạn thẳng có trong hình bên là bao nhiêu đoạn thẳng, liệt kê các đường thẳng đó? Bài 9: Trên tia Ox vẽ các đoạn thẳng OC và OD sao cho OC = 3cm, OD = 5cm. Hãy so sánh OC và CD. Bài 10: Cho ba điểm V, A, T thẳng hàng. Điểm nào nằm giữa hai điểm còn lại nếu: TV + VA = TA. Bài 11: Cho đoạn thẳng AB = 5cm. Gọi M là trung điểm của đoạn thẳng AB. Lấy điểm N nằm giữa A và M sao cho AN = 1,5cm. Vẽ hình và tính độ dài MN. Bài 12: Trên tia Ox vẽ các đoạn thẳng OA, OB sao cho OA = 3cm, OB = 5cm. a. Điểm A có phải là trung điểm của OB không? Vì sao? b. Trên Ox lấy điểm C sao cho OC = 1cm. Điểm A có phải là trung điểm của BC không? Vì sao? Bài 13: Cho đoạn thẳng AB = 4cm. Trên tia AB lấy điểm C sao cho AC = 1cm. a. Tính BC. b. Lấy điểm D thuộc tia đối của tia BC sao cho BD = 2cm. Tính CD. Bài 14: Cho đoạn thẳng AB = 15cm. Lấy điểm C thuộc đoạn AB sao cho AC = 10cm và điểm D thuộc đoạn AB sao cho BD = 7cm. a. Chứng tỏ điểm D nằm giữa hai điểm A, C và điểm C nằm giữa hai điểm D, B. b. Tính độ dài đoạn thẳng DC. Bài 15. Trên tia Ox lấy hai điểm A và B sao cho OA = 3cm, OB = 6cm. a. Điểm A có nằm giữa O và B không? Vì sao? b. Điểm A có là trung điểm của đoạn OB không? Vì sao? Bài 16. Trên đoạn thẳng AB = 6cm, lấy điểm M sao cho AM = 2cm và điểm C là trung điểm của MB. a. Tính MB. b. Chứng minh M là trung điểm của AC. Bài 17. Cho đoạn thẳng AC = 7cm. Điểm B nằm giữa A và C sao cho BC = 3cm. a. Tính độ dài đoạn thẳng AB. b. Trên tia đối của tia BA lấy điểm D sao cho BD = 6cm. So sánh BC và CD. c. Điểm C có phải là trung điểm của BD không? Bài 18. Trên đường thẳng xy, lấy các điểm A, B, C theo thứ tự đó sao cho AB = 6 cm, AC = 8 cm. a. Tính độ dài đoạn thẳng BC. b. Gọi M là trung điểm của đoạn thẳng AB. Hãy so sánh MC và AB. Bài 19. Trên tia Ox lấy hai điểm A và B sao cho OA = 7cm, OB = 3cm. a. Tính AB. b. Cũng trên Ox lấy điểm C sao cho OC = 5cm. Trong ba điểm A, B, C điểm nào nằm giữa hai điểm còn lại? c. Tính BC, CA. d. Điểm C là trung điểm của đoạn thẳng nào? Bài 20. Trên tia Ox, vẽ các đoạn thẳng OA, OB sao cho OA = 3cm, OB = 5cm. a. Điểm A có là trung điểm của OB không? Vì sao? b. Trên tia Ox, lấy điểm C sao cho OC = 1cm. Điểm A có là trung điểm của BC không? Vì sao? Bài 21. Cho đoạn thẳng AB = 6cm. Gọi O là một điểm nằm giữa A và B sao cho OA = 4cm. Gọi M, N lần lượt là trung điểm của OA và OB. Tính MN. Bài 22. Trên tia Ox lấy 2 điểm M và N sao cho OM = 3cm, ON = 5 cm. a. Trong ba điểm O, M, N điểm nào nằm giữa hai điểm còn lại? Vì sao? b. Tính MN. c. Trên tia NM lấy điểm P sao cho NP = 4 cm. Điểm M có là trung điểm của đoạn thẳng NP không? Vì sao? Bài 23. Cho đoạn thẳng CD = 5 cm. Trên đoạn thẳng này lấy hai điểm I và K sao cho CI = 1cm, DK = 3 cm. a. Điểm K có là trung điểm của đoạn thẳng CD không? Vì sao? b. Chứng tỏ rằng điểm I là trung điểm của đoạn thẳng CK. Bài 24. Cho đoạn thẳng AB = 12 cm và điểm C thuộc đoạn thẳng AB. Biết AC = 6cm. a. Điểm C có là trung điểm của đoạn thẳng AB không? Vì sao? b. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AC, CB . Tính MN. Bài 25. Cho đoạn thẳng AC = 5cm. Điểm B nằm giữa hai điểm A và C sao cho BC = 3cm. a. Tính AB. b. Trên tia đối của tia BA lấy điểm D sao cho DB = 6 cm. So sánh BC và CD. c. Điểm C có là trung điểm của đoạn thẳng DB không? Vì sao? Bài 26. Trên tia Ox lấy hai điểm A, B sao cho OA = 3cm, OB = 6cm. a. Trong ba điểm O, A, B điểm nào nằm giữa hai điểm còn lại? Vì sao? b. Tính AB. c. Điểm A có phải là trung điểm của đoạn thẳng OB không? Vì sao? d. Gọi I là trung điểm của đoạn thẳng OA, K là trung điểm của đoạn thẳng AB. Tính IK.
Tài liệu đính kèm: