Kiểm tra học kì I, năm học 2012-2013 môn: Toán lớp 10 - Trường Thpt Lê Thánh Tông

doc 4 trang Người đăng khoa-nguyen Lượt xem 1020Lượt tải 1 Download
Bạn đang xem tài liệu "Kiểm tra học kì I, năm học 2012-2013 môn: Toán lớp 10 - Trường Thpt Lê Thánh Tông", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Kiểm tra học kì I, năm học 2012-2013 môn: Toán lớp 10 - Trường Thpt Lê Thánh Tông
 SỞ GD & ĐT GIA LAI KIỂM TRA HỌC KÌ I, NĂM HỌC 2012-2013
TRƯỜNG THPT LÊ THÁNH TƠNG	 MƠN: TỐN LỚP 10 - THPT 	 	 -----------------------------	 Thời gian: 90 phút (khơng kể thời gian phát đề)
	ĐỀ CHÍNH THỨC
	I-PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm):
	Bài 1:(2,5 điểm)
Cho hàm số 
a/Lập bảng biến thiên và vẽ đồ thị (P) của hàm số
b/Tìm toạ độ giao điểm của (P) và đường thẳng y = x - 1
Bài 2:(1,5 điểm) 
Cho phương trình 
a/Giải phương trình khi m = 1
b/Tìm m để phương trình cĩ một nghiệm .Tìm nghiệm cịn lại.
Bài 3:(2,0 điểm) 
Trong mặt phẳng Oxy cho A(1;2), B(-2;6), C(9;8)
a) Chứng minh A, B, C là 3 đỉnh của tam giác.Tính chu vi, diện tích tam giác ABC. 
b) Tìm tọa độ D sao cho hình thang ABCD cĩ cạnh đáy D.
	Bài 4:(1,0 điểm)
Cho a, b là các số dương .
	Chứng minh rằng: . Đẳng thức xảy ra khi nào ? 
II-PHẦN RIÊNG(3 điểm):
Thí sinh học chương trình nào chỉ được làm phần dành riêng cho chương trình đĩ.
	A-Chương trình cơ bản:
	Bài 5a(2,0 điểm): Giải phương trình:	
Bài 6a(1,0 điểm): 
Cho tam giác ABC cĩ trọng tâm G.Gọi M , N và P lần lượt là trung điểm của các đoạn AB, ACvà BC.Tính theo hai vectơ và 
B-Chương trình nâng cao:
Bài 5b(2,0 điểm): Giải hệ phương trình: 
Bài 6b(1,0 điểm): 
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, cịn P là trọng tâm tam giác AND. Tính theo hai vectơ và .
-------------------Hết-----------------
Thí sinh khơng được sử dụng tài liệu. Giám thị coi thi khơng giải thích gì thêm
 SỞ GD & ĐT GIA LAI KIỂM TRA HỌC KÌ I, NĂM HỌC 2012-2013
TRƯỜNG THPT LÊ THÁNH TƠNG	 MƠN: TỐN LỚP 10 - THPT 	 	 -----------------------------	
ĐÁP ÁN ĐỀ CHÍNH THỨC
ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM
Bài
Đáp án
Biểu điểm
1.a
(1,75điểm)
+Đỉnh I(-1; 4)
+Trục đối xứng x = -1
+Bảng biến thiên:
x
- -1 + 
y
 4 
- - 
+ Vẽ đồ thị hàm số
0,5 đ
0,25đ
0,5 đ
0,5 đ
1.b
(0,75điểm)
Hồnh độ giao điểm của (P) và đường thẳng y = x - 1 là nghiệm của phương trình : - x2 - 2x + 3 = x - 1
 Û - x2 – 3x + 4 = 0
 Û 
Vậy cĩ hai giao điểm là (1;0), (-4;-5).
0,25đ
0,25đ
0,25đ
2.a
(0,75điểm)
Với m = 1 ta cĩ phương trình x2 – 6 x +5 = 0
 Û x = 1 ; x = 5
Vậy m = 1 thì phương trình cĩ hai nghiệm x =1 ; x = 2
0,25 đ
 0,5đ
2.b
(0,75điểm)
Vì x = 2 là nghiệm phương trình ta cĩ 
Với ta cĩ phương trình 
Vậy với thì phương trình cĩ nghiệm x = 2và nghiệm cịn lại là x = -5
0,5đ
0,25đ
3.a
(1,5điểm)
 Þ khơng cùng phương nên ba điểm A, B, C là ba đỉnh của tam giác
AB = 5, AC = 10, BC = 
Chu vi tam giác ABC bằng AB + BC + CA = 
Ta cĩ 
Suy ra tam giác ABC vuơng tại A
Vậy diện tích tam giác ABC: 
0,5 đ
0,5đ
0,5đ
3.b
(0,5điểm)
Tìm tọa độ D sao cho hình thang ADBC cĩ cạnh đáy 
Gọi là đỉnh của hình thang ABCD
Vì hình thang ABCD cĩ cạnh đáy nên hay 
0,5đ
4.
(1điểm)
BĐT được biến đổi tương đương về dạng 
Đẳng thức xảy ra khi a = b
0,25đ
 0,5đ
 0,25đ
5.a
(2,0điểm)
Điều kiện: 
Bình phương hai vế phương trình ta được
Thử lại, ta thấy phương trình cĩ nghiệm là x = 2 
Vậy phương trình cĩ một nghiệm x = 6.
0,5đ
0,5đ
0,5đ
0,5đ
6.a
(1,0điểm)
0,5đ
0,5đ
5.b
(2,0điểm)
Đặt S = x + y và P = x.y
Hệ trở thành 
 Suy ra S = 3 ; P = 2 hoặc S = 2 ; P = 3
+ S = 3 Þ P = 2 
+ S = 2 Þ P = 3 Þ hệ vô nghiệm
Vậy hệ đã cho có hai nghiệm (1;2), (2;1)
 0,5đ
0,5đ
 0,5đ
0,5đ
6.b
(1,0điểm)
 = 
 = 
0,5đ
0,5đ
* Chú ý: Nếu học sinh giải cách khác mà đúng thì vẫn cho điễm tối đa

Tài liệu đính kèm:

  • docDe-KT-HK1-L10PT-GiaLai-2013-Toan.doc