Kiểm tra chất lượng học kỳ I năm học: 2012-2013 môn thi: Toán - Lớp 12 Trường THPT Thành phố Cao Lãnh (2)

doc 6 trang Người đăng khoa-nguyen Lượt xem 1001Lượt tải 0 Download
Bạn đang xem tài liệu "Kiểm tra chất lượng học kỳ I năm học: 2012-2013 môn thi: Toán - Lớp 12 Trường THPT Thành phố Cao Lãnh (2)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Kiểm tra chất lượng học kỳ I năm học: 2012-2013 môn thi: Toán - Lớp 12 Trường THPT Thành phố Cao Lãnh (2)
Trường THPT Thành phố Cao Lãnh
ĐỀ THAM KHẢO	 KỲ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ I
 Môn thi : TOÁN KHỐI 12
 Thời gian làm bài : 120 phút (Không kể thời gian phát đề)
 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH : (7,0 điểm)
Câu I : (3,0 điểm)
 Cho hàm số 
 1/ Khảo sát vẽ đồ thị hàm số 
 2/ Tìm m để phương trình : có 4 nghiệm phân biệt . 
Câu II : (2,0 điểm)
 1/ Tính giá trị của các biểu thức sau :
 2/ Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :
 trên 
Câu III : (2,0 điểm)
 Cho hình chóp đều S.ABCD, có đáy ABCD là hình vuông cạnh a, cạnh bên bằng 2a
 1/ Tính thể tích của khối chóp theo a.
 2/ Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD.
II. PHẦN RIÊNG : (3,0 điểm)
 Học sinh tự chọn một trong hai phần ( phần 1 hoặc phần 2)
A. Phần 1
Câu IVa : (1,0 điểm)
 Cho . Viết phương trình tiếp tuyến của (C) tại điểm thuộc (C) có tung độ bằng 3 . 
 Câu Va : (2,0 điểm)
 1/ Giải phương trình : 
 2/ Giải bất phương trình : 
B. Phần 2
Câu IVb : (1,0 điểm)
 Cho . Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đó song song đường thẳng 
Câu Vb : (2,0 điểm)
 1/ Cho hàm số : . Chứng minh rằng : 
 2/ Cho hàm số (C) : y = 2x3-3x2-1. Gọi d là đường thẳng qua M(0;-1) và có hệ số góc k . Tìm k để đường thẳng d cắt (C) tại ba điểm phân biệt. 
--------------------Hết--------------------
Đáp án
******
Câu
Nội dung
điểm
Câu I : (3đ)
 Cho hàm số 
 1/ Khảo sát vẽ đồ thị hàm số 
(2đ)
 * Tập xác định : D = R 
0,25
 * 
0,25
 * 
0,25
 Hàm số đồng biến trên 
 Hàm số nghịch biến trên 
0,25
 * 
0.25
 * Bảng biến thiên 
x
 -1 0 1 
y/
 + 0 – 0 + 0 –
y
 4 4
 3 
0,25
Đđb : 
0,25
Đồ thị 
0,25
2/ Tìm m để phương trình có 4 nghiệm phân biệt
(1đ)
 Ta có 
0,25
 Đây là phương trình xác định hoành độ giao điểm của 
0,25
 Pt đã cho có 4 nghiệm phân biệt khi và chỉ khi có 4 điểm chung
0,5
Câu II : (2,0 đ)
 1/ Tính giá trị của các biểu thức sau :
(1đ)
0,75
0,25
2/ Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :
 trên 
(1đ)
0,25
0,25
 * 
 * 
 * 
0,25
 khi x = e 
 khi x = 1 
0,25
Câu III : (2đ)
 Cho hình chóp đều S.ABCD, có đáy ABCD là hình vuông cạnh a, cạnh bên bằng 2a
 1/ Tính thể tích của khối chóp theo a
 2/ Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD
Gọi O là giao điểm hai đường chéo AC và BD
Vì hình chóp S.ABCD đều nên 
0,25
 , , 
0,75
0,25
 đvtt
0,25
2/ Gọi M là trung điểm SC. Mặt phẳng trung trực của SC cắt SO tại I ta có :
 (1)
 SO là trục của đường tròn ngoại tiếp hình vuông ABCD
 (2) 
 Từ (1) và (2) 
 Nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD
0,25
* Xét hai tam giác đồng dạng và 
 Ta có 
 Vậy bán kính mặt cầu ngoại tiếp hình chóp S.ABCD bằng 
0,25
Câu IV.a : (1,0 điểm)
 Cho . Viết phương trình tiếp tuyến của (C) tại điểm thuộc (C) có tung độ bằng 3 
Điểm thuộc (C) có tung độ bằng 3 là 
0,25
0,25
Phương trình tiếp tuyến của (C) tại A là :
0,25
0,25
Câu V.a : (2,0 điểm)
 1/ Giải phương trình : (1) 
(1đ)
0,25
 Đặt , 
0,25
Pt trở thành : 
0,25
* 
Vậy phương trình có một nghiệm 
0,25
2/ Giải bất phương trình : (1) 
(1đ)
Điều kiện : 
 Bpt (1) 
0,25
0,25
0,25
Giao điều kiện ta được : 
0,25
Câu IV.b (1,0 điểm)
 Cho . Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đó song song đường thẳng 
Gọi tiếp tuyến là đường thẳng 
 có hệ số góc là -9
Vì nên có hệ số góc là -9
0,25
Gọi là tiếp điểm ta có : 
0,25
* Phương trình tiếp tuyến của (C) tại là :
0,25
* Phương trình tiếp tuyến của (C) tại là :
0,25
Câu V.b (2,0 điểm)
1/ Cho hàm số : . Chứng minh rằng : 
(1đ)
* 
0,25
* 
0,25
0,25
Ta có : 
Vậy 
0,25
 2/ Cho hàm số (C) : y = 2x3-3x2-1.Gọi d là đường thẳng qua M(0;-1) và có hệ số góc k . Tìm k để đường thẳng d cắt (C) tại ba điểm phân biệt. 
(1đ)
0,25
Phương trình xác định hoành độ giao điểm của (C) và là :
 (1)
0,25
0,25
d cắt (C) tại ba điểm phân biệt khi và chỉ khi pt (1) có ba nghiệm phân biệt
 pt (2) có hai nghiệm phân biệt khác 0
0,25

Tài liệu đính kèm:

  • docDE-THI-THU-TOAN 12 HKI - TPCL 2.doc