Giáo án Hàm số

docx 6 trang Người đăng TRANG HA Lượt xem 1280Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Hàm số", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Giáo án Hàm số
Hàm số
Mỗi số thuộc tập X tương ứng với một số duy nhất thuộc tập Y qua hàm f
Trong toán học, khái niệm hàm số (hay hàm) được hiểu tương tự như khái niệm ánh xạ. Nếu như ánh xạ được định nghĩa là một quy tắc tương ứng áp dụng lên hai tập hợpbất kỳ (còn được gọi là tập nguồn và tập đích), mà trong đó mỗi phần tử của tập hợp này (tập hợp nguồn) tương ứng với một và chỉ một phần tử thuộc tập hợp kia (tập hợp đích), thì ta hoàn toàn có thể coi hàm số là một trường hợp đặc biệt của ánh xạ, khi tập nguồn và tập đích đều là tập hợp số.
Ví dụ một hàm số f xác định trên tập hợp số thực R được miêu tả bằng biểu thức: y =x2 - 5 sẽ cho tương ứng mỗi số thực x với một số thực y duy nhất nhận giá trị là x2 - 5, như vậy 3 sẽ tương ứng với 4. Khi hàm f đã được xác định, ta có thể viết f(3) = 4.
Đôi khi chữ hàm được dùng như cách gọi tắt thay cho hàm số. Tuy nhiên trong các trường hợp sử dụng khác, hàm mang ý nghĩa tổng quát của ánh xạ, như trong lý thuyết hàm. Các hàm hay ánh xạ tổng quát có thể là liên hệ giữa các tập hợp không phải là tập số. Ví dụ có thể định nghĩa một hàm là quy tắc cho tương ứng mỗi hãng xe với tên quốc gia xuất xứ của nó, chẳng hạn có thể viết Xuất_xứ(Honda) = Nhật.
Khái niệm
Định nghĩa
Cho X, Y là hai tập hợp số, ví dụ tập số thực R, hàm số f xác định trên X, nhận giá trị trong Y là một quy tắc cho tương ứng mỗi số x thuộc X với một số y duy nhất thuộc Y.
Ký hiệu
 hoặc  hoặc 
Với:
Tập X gọi là miền xác định.
Tập Y gọi là miền giá trị.
x gọi là biến độc lập hay còn gọi là đối số.
y gọi là biến phụ thuộc hay còn được gọi là hàm số.
f(x) được gọi là giá trị của hàm f tại x.
Cách cho hàm số
Hàm số có thể được cho bằng bảng hoặc bằng biểu đồ hoặc bằng biểu thức.
Ví dụ: X = {1,2,3,4,5}, Y = {5,6,7,8,9,10}.
Hàm  được cho bảng sau:
x
1
2
3
4
5
y
5
5
6
7
8
Các hàm cho bằng biểu thức như , , ...
Lưu ý: Trong chương trình môn Toán ở bậc Trung học phổ thông của Việt Nam (chỉ đề cập đến Hàm số biến số thực) quy ước rằng:
Khi không nói rõ thêm, miền xác định (tập xác định) của hàm số cho bằng biểu thức y = f(x) là tập hợp tất cả các giá trị của x làm cho f(x) có nghĩa.
Ví dụ: Hàm số  có miền xác định là 
Hàm số  là 
Miền giá trị của hàm số y = f(x) là tập hợp tất cả các giá trị có thể có của , nghĩa là .
Ví dụ: Miền giá trị của hàm số  là .
Nếu X,Y  thì hàm số được gọi là hàm số thực.
Ví dụ: Hàm lượng giác ,hàm mũ ,...
Nếu X,Y  thì hàm số được gọi là hàm số biến số phức.
Ví dụ: Hàm dao động ;
Nếu X  thì hàm số được gọi là hàm số số học.
Ví dụ: Hàm Euler  biểu diễn số các số tự nhiên không vượt quá n và nguyên tố cùng nhau với n, hàm Sigma  biểu diễn tổng tất cả các ước của số tự nhiên n...
Các dạng của hàm số
Đơn ánh, song ánh, toàn ánh
Như trên đã đề cập, hàm số là một trường hợp ánh xạ, nên người ta cũng miêu tả hàm số dưới 3 dạng là đơn ánh, toàn ánh và song ánh.
Đơn ánh
Một hàm số là đơn ánh khi nó áp dụng lên 2 đối số khác nhau luôn cho 2 giá trị khác nhau.
Một cách chặt chẽ, hàm f, xác định trên X và nhận giá trị trong Y, là đơn ánh nếu như nó thỏa mãn điều kiện với mọi x1 vàx2 thuộc X và nếu x1 ≠ x2 thì f(x1) ≠ f(x2).
Nghĩa là, hàm số f là đơn ánh khi và chỉ khi:
Với đồ thị hàm số y = f(x) trong hệ tọa độ Đề các, mọi đường thẳng vuông góc với trục đối số Ox sẽ chỉ cắt đường cong đồ thị tại nhiều nhất là một điểm
Toàn ánh
Hàm số f được gọi là toàn ánh nếu như với mọi số y thuộc Y ta luôn tìm được ít nhất một số x thuộc X sao cho f(x) = y. Theo cách gọi của ánh xạ thì điều kiện này có nghĩa là mỗi phần tử y thuộc Y đều là tạo ảnh của ít nhất một mẫu x thuộc Xqua ánh xạ f.
Nghĩa là, hàm số f là toàn ánh khi và chỉ khi:
 cũng tức là 
Đồ thị hàm  cắt đường thẳng 
Song ánh
Trong toán học, song ánh, hoặc hàm song ánh, là một hàm số f từ tập X vào tập Y thỏa mãn tính chất, đối với mỗi y thuộc Y, có duy nhất một x thuộc X sao cho f(x) = y.
Nói cách khác, f là một song ánh nếu và chỉ nếu nó là tương ứng một-một giữa hai tập hợp; tức là nó vừa là đơn ánh và vừa là toàn ánh.
Ví dụ, xét hàm fxác định trên tập hợp số nguyên  vào, được định nghĩa f(x) = x + 1. Ví dụ khác, đối với mỗi cặp số thực (x,y) hàm f xác định bởi f(x,y) = (x + y, x − y) là một song ánh
Hàm song ánh đôi khi còn gọi là hoán vị.
Tập hợp tất cả các song ánh từ tập X vào tập Y được kí hiệu là X ↔ Y. Thông thường tập các hoán vị của tập X được kí hiệu làX!.
Song ánh đóng nhiều vai trò quan trọng trong toán học, như nó dùng để định nghĩa đẳng cấu (và những khái niệm liên quan như phép đồng phôi và vi phôi), nhóm hoán vị, ánh xạ xạ ảnh, và nhiều định nghĩa khác
Minh hoạ
Đơn ánh nhưng
không phải toàn ánh
Toàn ánh nhưng
không phải đơn ánh
Vừa đơn ánh
vừa toàn ánh
(= song ánh)
Hàm hợp và hàm ngược
Hàm hợp
Cho các hàm số:
trong đó X, Y, Z là các tập hợp số nói chung. Hàm hợp của f1 và f2 là hàm số:
được định nghĩa bởi:
Có thể ký hiệu hàm hợp là:
Ví dụ, hàm số f(x) = sin (x2+1) là hàm số hợp f2(f1(x)), trong đó f2(y) = sin(y), f1(x) = (x2 +1).
Việc nhận biết một hàm số là hàm hợp của các hàm khác, trong nhiều trường hợp có thể khiến các tính toán giải tích (đạo hàm, vi phân, tích phân) trở nên đơn giản hơn.
Hàm ngược
Cho hàm số song ánh:
trong đó X, Y là tập hợp số nói chung. Khi đó mỗi phần tử y = f(x) với y nằm trong Y đều là ảnh của một và chỉ một phần tửx trong X. Như vậy, có thể đặt tương ứng mỗi phần tử y trong Y với một phần tử x trong X. Phép tương ứng đó đã xác định một hàm số, ánh xạ từ Y sang X, hàm số này được gọi là hàm số ngược của hàm số f và được kí hiệu là:
Nếu f−1(x) tồn tại ta nói hàm số f(x) là khả nghịch. Có thể nói tính chất song ánh là điều kiện cần và đủ để hàm f(x) khả nghịch, tức là nếu f(x) là song ánh thì ta luôn tìm được hàm ngược f−1(x) và ngược lại.
Đồ thị của hàm số
Xem thêm: Đồ thị của hàm số
Thông thường thì hàm số được xác định bằng một biểu thức tổng quát y = f(x) nào đó, ví dụ như y = x2 - 5. Tuy nhiên cũng có những hàm đặc biệt mà quy tắc cho tương ứng x với y của nó không theo bất kỳ một quy luật nào để có thể diễn đạt bằng một biểu thức toán học. Trong trường hợp này ta có thể lập bảng cho các giá trị đối số x và các giá trị hàm số y tương ứng với chúng. Ngoài ra hàm số còn có thể được xác định một cách triệt để bằng đồ thị của nó.
Đối với hàm số một biến số thực (có miền xác định thực), đồ thị hàm số được định nghĩa như sau:
Đồ thị của hàm số y = f(x) là tập hợp các điểm trên mặt phẳng R2 có tọa độ [x, f(x)].
Ký hiệu đồ thị hàm số theo định nghĩa trên là:
Xem thêm
Ánh xạ
Hàm số đơn điệu
Tham khảo
Liên kết ngoài
 The Wolfram Functions Site
Theory of Functions and related areas
Notes on functions

Tài liệu đính kèm:

  • docxHam_so.docx