Đề thi tuyển sinh vào Lớp 10 THPT môn Toán (Chuyên Toán) - Năm học 2017-2018 - Trường THPT chuyên Lê Quý Đôn (Có đáp án)

doc 5 trang Người đăng duyenlinhkn2 Ngày đăng 02/11/2024 Lượt xem 71Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 THPT môn Toán (Chuyên Toán) - Năm học 2017-2018 - Trường THPT chuyên Lê Quý Đôn (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề thi tuyển sinh vào Lớp 10 THPT môn Toán (Chuyên Toán) - Năm học 2017-2018 - Trường THPT chuyên Lê Quý Đôn (Có đáp án)
SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN 
 BÌNH ĐỊNH NĂM HỌC 2017 - 2018
 	 TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN
 Đề chính thức
 Môn: TOÁN (Chuyên toán)
 Ngày thi: 04/06/2017
 Thời gian làm bài: 150 phút (không kể thời gian phát đề)
Bài 1: (2,0 điểm)
 Cho biểu thức A = 
 a) Tìm điều kiện của x để biểu thức A có nghĩa. Rút gọn A
 b) Tìm x để A 0
 c) Tìm giá trị lớn nhất của A.
Bài 2: (2,0 điểm)
 1) Giải phương trình sau:
 2) Chứng minh rằng nếu số tự nhiên là số nguyên tố thì không là số chính phương.
Bài 3: (1,0 điểm)
 Cho đa thức f(x) = – 2(m + 2)x + 6m + 1 (m là tham số). Bằng cách đặt x = t + 2. Tính f(x) theo t và tìm điều kiện của m để phương trình f(x) = 0 có hai nghiệm lớn hơn 2.
Bài 4: (4,0 điểm)
1. Cho đường tròn (T) tâm O đường kính AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD.
 a) Chứng minh tứ giác AOHP nội tiếp được đường tròn.
 b) Kẻ DI song song với PO, điểm I thuộc AB, chứng minh: 
 c) Chứng minh đẳng thức 
 d) BC cắt OP tại J, chứng minh AJ song song với DB.
2. Cho tam giác ABC vuông tại A. Từ điểm I thuộc miền trong tam giác, kẻ IM BC, kẻ
IN AC, IK AB. Tìm vị trí của I sao cho tổng nhỏ nhất.
Bài 5: (1,0 điểm)
	Cho các số thực dương x, y, z thỏa mãn xyz 1.
 Chứng minh rằng: 
GV: Võ Mộng Trình – THCS Cát Minh – Phù Cát – Bình Định
Bài 1: 
a) Điều kiện để A có nghĩa là x 0 và x 1
A = = 
= = = – x + 
b) A 0 – x + 0 x – 0 0 0 1
0 x 1. Kết hợp với điều kiện ban đầu x 0 và x 1. Ta được: 0 x < 1
c) A = – x + = với mọi x
Dấu “=” xảy ra khi = 0 (TMĐK x 0 và x 1)
Vậy GTLN của A là khi x = 
Bài 2: 
1) x = 0 không phải là nghiệm của phương trình nên x 0. Do đó chia cả hai vế phương trình cho 0, ta được: (1)Đặt: y = . 
Do đó PT (1) trở thành: y = – 6 ; y = 4
Với y = – 6 ta có: = – 6 
Với y = 4 ta có: = 4 
Vậy phương trình đã cho có tập nghiệm là: S = 
Cách 2: 
PT (1): 
PT (2): 
Vậy phương trình đã cho có tập nghiệm là: S = 
2) Chứng minh bằng phản chứng. Giả sử là số chính phương 
Xét 4a. = 4a(100a + 10b + c) = = 
 = = (20a + b + m)(20a + b – m)
Tồn tại một trong hai thừa số 20a + b + m, 20a + b – m chia hết cho số nguyên tố . Điều này không xảy ra vì cả hai thừa số trên đều nhỏ hơn .
Thật vậy, do m < b (vì ) nên:
20a + b – m 20a + b + m < 100a + 10b + c = 
Vậy nếu số tự nhiên là số nguyên tố thì không là số chính phương.
Bài 3: 
Ta có: h(t) = f(t + 2) = 
= 
= 
 = 0 (*)
Phương trình: f(x) = 0 có 2 nghiệm lớn hơn 2 Phương trình h(t) = 0 có 2 nghiệm dương
Vậy với m thì phương trình f(x) = 0 có 2 nghiệm lớn hơn 2.
Bài 4
1. a) Chứng minh tứ giác AOHP nội tiếp được đường tròn.
Ta có: OH CD tại H (vì HC = HD)
Do đó: 
 Tứ giác AOHP nội tiếp đường tròn đường kính OP
b) Chứng minh: 
 (so le trong và DI // PO)
 (vì nội tiếp cùng chắn )
Do đó: 
c) Chứng minh đẳng thức 
PAC ~ PDA (g.g) 
d) Chứng minh AJ // DB.
Kẻ tiếp tuyến PN (N khác A) của đường tròn (T), 
(với N là tiếp điểm).
Ta chứng minh được PO là đường trung trực của NA
 JA = JN
APJ và NPJ có: PA = PN; ; JA = JN
APJ = NPJ (c.g.c) (1)
Ta có: (vì tứ giác PAON nội tiếp) và (vì 2 góc kề bù) 
 Tứ giác NCJP nội tiếp được (2)
Từ (1) và (2) suy ra: 
Ta có: JA AD tại A (3)
Có: (vì nội tiếp chắn nửa đường tròn) DB AD (4)
Từ (3) và (4) suy ra: AJ // DB
GV: Võ Mộng Trình – THCS Cát Minh – Phù Cát – Bình Định
Cách 2: (Câu d)
Gọi E là giao điểm của DI với BC; 
Q là giao điểm của BD và PO
Ta có: (cmt)
 Tứ giác DIHA nội tiếp 
Mà: (vì nội tiếp cùng chắn cung BD)
Do đó: HI // BC
DEC có HC = HD; HI // CE IE = ID (1)
BOQ có ID // OQ nên (2)
BOJ có IE // OJ nên (3)
Từ (1), (2), (3) suy ra: OQ = OJ; mà OA = OB nên tứ giác 
BJAQ là hình bình hành AJ // BQ hay AJ // BD
2. Bổ đề: Với a > 0; b > 0 ta có: (1). Dấu “=” xảy ra khi a = b
Thật vậy: (1) (BĐT đúng)
Dấu “=” xảy ra khi a = b. Vậy: 
Kẻ đường cao AH H là điểm cố định (vì A, B, C cố định) 
Gọi P là hình chiếu vuông góc của I trên AH.
Áp dụng định lý Pytago cho các tam giác vuông 
INA, IPA ta có: 
Mặt khác: IN = PH nên:
Áp dụng bổ đề trên ta có:
: không đổi (vì A, H cố định)
Dấu “=” xảy ra khi IA = PA = PH = I là trung điểm của đường cao AH
Vậy khi I là trung điểm của đường cao AH thì tổng đạt GTNN là 
Cách 2: 
(vì ) = 
Theo bổ đề, ta có: : không đổi
Dấu “=” xảy ra khi A, I, M thẳng hàng, M trùng H và IM = IA
 I là trung điểm của đường cao AH
Vậy khi I là trung điểm của đường cao AH thì tổng đạt GTNN là 
Bài 5: 
Ta có: 
Ta có: xyz 1 nên (1)
Áp dụng bất đẳng thức Cô si cho 3 số dương: ; ; z, ta được:
 + + z 3x; tương tự: + + x 3y và + + y 3z
Cộng theo vế ta được: (2)
Từ (1) và (2) suy ra: . Dấu “=” xảy ra khi x = y = z = 1
GV: Võ Mộng Trình – THCS Cát Minh – Phù Cát – Bình Định

Tài liệu đính kèm:

  • docde_thi_tuyen_sinh_vao_lop_10_thpt_mon_toan_chuyen_toan_nam_h.doc