Trường THPT Chuyên Mặt Trăng Đề thi thử THPTQG năm học 2016 – 2017 Đề số 2 Câu 1: Hàm số nào sau đây đồng biến trên tập xác định của nó? A. B. C. D. Câu 2: Cho hàm số . Khi đó: A. B. . C. D. Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy . Khi tam giác SAC quay quanh cạnh SA thì đường gấp khúc SAC tạo thành một hình nón tròn xoay. Thể tích của khối nón tròn xoay đó là: A. B. C. D. Câu 4: Cho hình chóp S.ABCD có chiều cao , ABCD là hình thang vuông tại A và B trong đó và . Gọi E là trung điểm đoạn AD, tính theo a bán kính của khối cầu ngoại tiếp khối chóp S.CDE. A. B. a C. D. Câu 5: Cho hàm số . Khẳng định nào sau đây là sai ? A. Với thì hàm số có một điểm cực trị. B. Hàm số luôn có 3 điểm cực trị với với mọi C. Với hàm số có 3 điểm cực trị. D. Có nhiều hơn 3 giá trị của tham số m để hàm số có 1 điểm cực trị. Câu 6: Đồ thị dưới đây là của hàm số nào? A. B. C. D. Câu 7: Cho phương trình . Tập nghiệm của phương trình là: A. B. C. D. Câu 8: Một hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a. Gọi O là giao điểm AC và BD. Khi tam giác SOC quay quanh cạnh SO thì đường gấp khúc SOC tạo thành một hình nón tròn xoay. Diện tích xung quanh của hình nón tròn xoay đó là: A. B. C. D. Câu 9: Cho hàm số có bảng biến thiên dưới đây. Phát biểu nào sau đây là đúng ? x 0 1 y' + 0 - 0 + y 5 -2 A. Hàm số đạt cực tiểu tại và đạt cực đại tại B. Giá trị cực đại của hàm số là -3 C. Giá trị cực tiểu của hàm số là 0. D. Hàm số đạt cực đại tại và đạt cực tiểu tại Câu 10: Cho . Tính theo a: A. B. C. D. Câu 11: Giá trị của biểu thức là: A. B. C. D. Câu 12: Giao điểm hai đường tiệm cận của đồ thị hàm số có tọa độ là? A. B. C. D. Câu 13: Cho hàm số f(x) có bảng biến thiên như sau: x 0 y' + 0 - y 3 -3 -2 Trong các khẳng định sau khẳng định nào đúng ? A. Đồ thị hàm số có hai tiệm cận ngang là và B. Đồ thị hàm số có hai tiệm cận ngang là và C. Đồ thị hàm số không có tiệm cận ngang. D. Đồ thị hàm số có tiệm cận đứng. Câu 14: Tìm giá trị nhỏ nhất của hàm số trên đoạn A. -2 B. 0 C. D. Câu 15: Tìm giá trị nhỏ nhất của biểu thức với và x,y cùng dấu A. 2 B. 0 C. D. Không có giá trị nhỏ nhất Câu 16: Một công ty muốn thiết kế một loại hộp có dạng hình hộp chữ nhật, đáy là hình vuông và thể tích khối hộp được tạo thành là 10 m3 . Độ dài cạnh đáy của mỗi hộp muốn thiết kế để diện tích toàn phần đạt giá trị nhỏ nhất là ? A. B. C. 2m D. Câu 17: Cho biểu thức với . Giá trị nhỏ nhất của A bằng: A. 0 B. C. D. Câu 18: Trong các tam giác vuông có tổng của một cạnh góc vuông và cạnh huyền của tam giác vuông đó bằng 6. ộ dài cạnh huyền của tam giác vuông có diện tích lớn nhất là: A. 2 B. 4 C. 6 D. Câu 19: Cho hàm số có đồ thị (C). Tìm các giá trị của m để đường thẳng cắt đồ thị hàm số (C) tại hai điểm phân biệt A, B sao cho A. B. C. D. Câu 20: Cho và . Biểu diễn theo a, b ta được kết quả là A. B. C. D. Câu 21: Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật. . Hình chiếu vuông góc của điểm A' trên mặt phẳng (ABCD) trùng với giao điểm AC và BD. Tính khoảng cách từ điểm B' đến mặt phẳng (A'BD) theo a là: A. B. C. D. Câu 22: Tập hợp các giá trị của x để biểu thức có nghĩa là: A. B. C. D. Câu 23: Cho . Tính theo a và b ta được: A. B. C. D. Câu 24: Cho khối chóp tam giác S.ABC có (SBA) và (SBC) cùng vuông góc với (ABC), đáy ABC là tam giác đều cạnh a, SC bằng . Đường cao của khối chóp SABC bằng A. a B. C. D. Câu 25: Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy là tam giác vuông cân tại A cạnh AB bằng , góc giữa A'C và (ABC) bằng 450. Khi đó đường cao của lăng trụ bằng: A. a B. C. D. Câu 26: Cho phương trình . Tập nghiệm phương trình đã cho là: A. B. C. D. Câu 27: Cho . Khi đó có giá trị là: A. 3 B. 4 C. 2 D. 1 Câu 28: Cho hình chóp S.ABCD có ABCD là hình chữ nhật, , (SAB) vuông góc với (ABCD). Khi đó thể tích của khối chóp SABCD bằng A. B. C. D. Câu 29: Biểu thức viết dưới dạng luỹ thừa với số mũ hữu tỉ là A. B. C. D. Câu 30: Giá trị của là: A. B. C. D. 5 Câu 31: Điểm cực đại của đồ thị hàm số là ? A. B. C. D. Câu 32: Đồ thị hàm số có bao nhiêu đường tiệm cận ngang ? A. 1 B. 2 C. 0 D. 3 Câu 33: Cho . Hệ thức liên hệ giữa y và y' không phụ thuộc vào x là: A. B. C. D. Câu 34: Một hình nón có thể tích bằng và bán kính của đường tròn đáy bằng 2a. Khi đó, đường cao của hình nón là: A. a B. 2a C. D. 3a Câu 35: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh B, SA vuông góc với đáy, , góc giữa SC và mặt phẳng đáy bằng . Thể tích khối chóp S.ABC là A. B. C. D. Câu 36: Phương trình có tập nghiệm là: A. B. C. D. Câu 37: Giá trị của là: A. 1 B. 2 C. 4 D. 0 Câu 38: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Khi đó thể tích khối chóp BCC’D’ bằng A. B. C. D. Câu 39: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AC, lấy điểm P thuộc AD sao cho . Khi đó tỉ số thể tích bằng A. B. C. D. Câu 40: Đồ thị dưới đây là của hàm số nào? A. B. C. D. Câu 41: Cho hàm số . Tìm m để hàm số có 3 điểm cực trị. A. B. C. D. Câu 42: Cho một khối trụ có chiều cao bằng 8 cm, bán kính đường tròn đáy bằng 6 cm. Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục 4 cm. Diện tích của thiết diện được tạo thành là: A. B. C. D. Câu 43: Cho hình chóp S.ABCD có hình chiếu vuông góc của S trên mặt đáy ABCD là điểm I thuộc AD sao cho , ABCD là hình vuông có cạnh bằng a. Khi đó thể tích của khối chóp S.ABCD bằng: A. B. C. D. Câu 44: Tìm giá trị m để hàm số nghịch biến trên R. A. B. C. D. Câu 45: Cho hình chóp S.ABC có đáy là vuông cân ở B, và . Gọi G là trọng tâm của , một mặt phẳng đi qua AG và song song vsơi BC cắt SC, SB lần lượt tại M, N. Thể tích khối chóp S.AMN bằng A. B. C. D. Câu 46: Một hình trụ ngoại tiếp một hình lập phương cạnh a. Thể tích của khối trụ đó là: A. B. C. D. Câu 47: Kỳ thi THPT Quốc gia năm 2016 vừa kết thúc, Nam đỗ vào trường ại học Bách Khoa Hà Nội. Kỳ I của năm nhất gần qua, kỳ II sắp đến. Hoàn cảnh không được tốt nên gia đình rất lo lắng về việc đóng học phí cho Nam, kỳ I đã khó khăn, kỳ II càng khó khăn hơn. Gia đình đã quyết định bán một phần mảnh đất hình chữ nhật có chu vi 50 m, lấy tiền lo cho việc học của Nam cũng như tương lai của em. Mảnh đất còn lại sau khi bán là một hình vuông cạnh bằng chiều rộng của mảnh đất hình chữ nhật ban đầu. Tìm số tiền lớn nhất mà gia đình Nam nhận được khi bán đất, biết giá tiền đất khi bán là 1500000 VN đồng. A. 112687500 VN đồng. B. 114187500 VN đồng. C. 115687500 VN đồng. D. 117187500 VN đồng. Câu 48: Người ta muốn xây một bồn chứa nước dạng khối hộp chữ nhật trong một phòng tắm. Biết chiều dài, chiều rộng, chiều cao của khối hộp đó lần lượt là 5 m, 1m, 2m (hình vẽ bên). Biết mỗi viên gạch có chiều dài 20 cm, chiều rộng 10 cm, chiều cao 5 cm. Hỏi người ta sử dụng ít nhất bao nhiêu viên gạch để xây bồn đó và thể tích thực của bồn chứa bao nhiêu lít nước? (Giả sử lượng xi măng và cát không đáng kể ) A. 1182 viên; 8800 lít B. 1180 viên; 8820 lít C. 1180 viên; 8800 lít D. 1182 viên; 8820 lít Câu 49: Từ một khúc gỗ tròn hình trụ có đường kính bằng 40 cm, cần xả thành một chiếc xà có tiết diện ngang là hình vuông và bốn miếng phụ được tô màu xám như hình vẽ dưới đây. Tìm chiều rộng x của miếng phụ để diện tích sử dụng theo tiết diện ngang là lớn nhất. A. B. C. D. Câu 50: Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắt qua sông biết rằng thành phố A cách con sông một khoảng là 5 km và thành phố B cách con sông một khoảng là 7 km (hình vẽ), biết tổng độ dài . Hỏi cây cầu cách thành phố A một khoảng là bao nhiêu để đường đi từ thành phố A đến thành phố B là ngắn nhất ( i theo đường AEFB) A. B. C. D. Lời giải chi tiết 1-A 6-D 11-B 16-B 21-C 26-C 31-B 36-B 41-B 46-A 2-D 7-C 12-A 17-B 22-A 27-C 32-B 37-B 42-C 47-B 3-A 8-A 13-A 18-B 23-C 28-A 33-B 38-B 43-C 48-B 4-A 9-D 14-C 19-B 24-C 29-D 34-A 39-C 44-D 49-C 5-B 10-A 15-C 20-A 25-B 30-B 35-A 40-A 45-D 50-C Câu 1. Xét cơ số chỉ có đồng biến . Chọn A Câu 2. . Chọn D Câu 3. Ta có ngay Hình nón tròn xoay được tạo thành là một hình nón có thể tích là: . Chọn A Câu 4. Ta có ngay tứ giác ABCE là hình vuông Dựng hình như trên với PO là trục đường tròn ngoại tiếp . Cạnh Cạnh Ta có . Chọn A Câu 5. Với , ta có hàm số đạt cực trị tại đúng Từ đó ta có thể thấy ngay đáp án B sai, vì khi xét thì hàm số chỉ có một điểm cực trị. Hàm số có 3 điểm cực trị có 3 nghiệm phân biệt có 2 nghiệm phân biệt khác 0. Với ta có hàm số đạt cực trị tại Mặt khác, thì y' cũng chỉ đổi dấu 1 lần, tức là có 1 cực trị. Vậy D cũng đúng. Chọn B. Câu 6. Dựa vào đồ thị hàm số đi qua 2 điểm và nên chỉ có đáp án thỏa mãn yêu cầu. Chọn D. Câu 7. Điều kiện Khi đó thỏa mãn (*). Chọn C Câu 8. Diện tích cần tìm là Cạnh và . Chọn A Câu 9. Dựa vào bảng biến thiên trên ta có ngay: Hàm số đạt cực đại tại và Hàm số đạt cực tiểu tại và . Chọn D Câu 10. . Chọn A Câu 11. Ta có . Chọn B Câu 12. Đồ thị hàm số đã cho có tiệm cận đứng và tiệm cận ngang . Chọn A. Câu 13. Dựa vào đồ thị ta có được và nên đồ thị hàm số có 2 tiệm cận ngang là và . Chọn A. Câu 14. Đặt với . Chọn C Câu 15. Đặt do và x, y cùng dấu . Chọn C Câu 16. Đáy hình vuông cạnh a và đường cao tương ứng của hình hộp chữ nhật là b với Theo đề ta có: Dấu bằng xảy ra khi (mét). Chọn B. Câu 17. => GTNN của A bằng khi , chẳng hạn . Chọn B Câu 18. Đặt độ dài cạnh huyền là a, cạnh góc vuông bất kì là b Khi đó cạnh góc vuông còn lại là Ta có Ta đã áp dụng BĐT Cauchy: Dấu bằng xảy ra khi . Chọn B. Câu 19. PT hoành độ giao điểm Để (d) cắt (C) tại 2 điểm phân biệt khi Khi đó tọa độ giao điểm là và với là nghiệm của phương trình Ta có: Hai điều kiện đều thỏa. Chọn B Câu 20. Ta có Chọn A. Câu 21. Gọi H là hình chiếu của A' lên mặt phẳng (ABCD). Ta có: Mặt khác, xét hình chữ nhật A'D'DA thì D'A cắt A'D tại trung điểm A'D Gọi G là hình chiếu của A lên BD thì Tính . Chọn C. Câu 22. . Chọn A. Câu 23. Ta có . Chọn C Câu 24. do tam giác ABC đều . Chọn C Câu 25. A là hình chiếu của A' lên mặt phẳng (ABC) Lại có vì tam giác ABC cân tại A. Tam giác AA'C vuông tại A có góc nên vuông cân tại A . Chọn B Câu 26. Ta có . Chọn C Câu 27. Ta có . Chọn C Câu 28. Dễ thấy do đó tam giác SAB vuông tại S. Dựng , mặt khác Do đó Lại có Do vậy . Chọn A Câu 29. Ta có . Chọn D Câu 30. Ta có . Chọn B Câu 31. Ta có . Do hàm số nên điểm cực đại là và 2 điểm cực tiểu là . Chọn B Câu 32. Ta có do vậy hàm số có TCN là Lại có do vậy hàm số có TCN là . Chọn B. Câu 33. Ta có do đó . Chọn B Câu 34. Ta có . Chọn A Câu 35. Ta có Do Khi đó . Chọn A. Câu 36. Ta có: . Chọn B Câu 37. Ta có . Chọn B Câu 38. Ta có: (Do ) Lại có Do vậy . Chọn B Câu 39. Theo công thứ tỷ số thể tích ta có: . Chọn C Câu 40. Dựa vào đồ thị ta có với mọi do đó ta loại phương án B và D. Rõ ràng tập xác định của hàm số là nên đáp án đúng A. Chọn A Chú ý thêm đồ thị hàm số đi qua 2 điểm và nên chỉ có A là đáp án đúng. Chọn A Câu 41. Xét hàm số . Ta có Phương trình Để hàm số đã cho có ba điểm cực trị khi và chỉ khi phương trình (*) có hai nghiệm phân biệt Hay là giá trị cần tìm. Chọn B Giải nhanh: Hàm số có 3 cực trị khi Câu 42. Giả sử thiết diện là hình chữ nhật MNPQ như hình vẽ. Với là khoảng cách từ trục đến thiết diện và Ta có Khi đó . Chọn C Câu 43: Ta có Xét tam giác vuông SB, Do đó . Chọn C. Câu 44. Xét hàm số . Ta có . Để hàm số đã cho nghịch biến trên R khi và chỉ khi là giá trị cần tìm. Chọn D. Câu 45. Tam giác ABC vuông tại Gọi I là trung điểm BC, G là trọng tâm của tam giác SBC Nên mà MN song song với BC suy ra Do đó Mặt khác Suy ra . Chọn D Câu 46. Gọi H là tâm của hình vuông ABCD suy ra là bán kính đường tròn đáy của hình trụ. Khi đó, thể tích hình trụ bằng . Chọn A. Câu 47. Diện tích đất bán ra càng lớn thì số tiền bán được càng cao Gọi chiều rộng và chiều dài của mảnh đất hình chữ nhật ban đầu lần lượt là Chu vi mảnh đất hình chữ nhật ban đầu bằng Bài ra, ta có ngay mảnh đất được bán là một hình chữ nhật có diện tích là Dấu "=" xả ra Như vậy, diện tích đất nước được bán ra lớn nhất 78,125 m2. Khi đó số tiền lớn nhất mà gia đình Nam nhận được khi bán đất là Chọn D. Câu 48. Gọi V là thể tích của hình hộp chữ nhật, có Ta có và Do đó . Mà thể tích của một viên gạch là . Nên số viên gạch cần sử dụng là: viên gạch. Thể tích thực của bồn là . Chọn B Câu 49. Diện tích sử dụng theo tiết diện ngang là Cạnh hình vuông (1) Ta có Lại có Thế vào Xét hàm số , với có Ta có Khi đó chính là giá trị thỏa mãn bài toán. Chọn C. Câu 50. Đặt và , theo giả thiết ta có Xét các tam giác vuông AHE và BKF, ta được Vì độ dài cầu EF là không đổi nên để đường đi từ thành phố A đến thành phố B là ngắn nhất theo con đường AEFB thì ngắn nhất. Hay ngắn nhất. Ta có với Cách 1. Sử dụng bất đẳng thức với mọi Vì Sử dụng bất đẳng thức trên, ta được Dấu bằng xảy ra khi và chỉ khi suy ra nên Cách 2: Với , với Có Do đó . Chọn C Bạn có thể nhận xét và góp ý tài liệu này ở link dưới :
Tài liệu đính kèm: