Đề thi olympic môn Toán Lớp 7 - Năm học 2016-2017

pdf 4 trang Người đăng duyenlinhkn2 Ngày đăng 08/11/2023 Lượt xem 215Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi olympic môn Toán Lớp 7 - Năm học 2016-2017", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề thi olympic môn Toán Lớp 7 - Năm học 2016-2017
Ba ̣n đó tải tài liệu tại: Xuctu.com – Sách tham khảo tại: https://goo.gl/uUHO1C 
đề thi Ô-lim -pic 
Môn Toán Lớp 7 
Năm học 2016-2017 
(Thời gian làm bài 120 phút) 
Bài 1. Tìm giá trị n nguyên dương: 
 a) 
1
.16 2
8
n n ; b) 27 < 3n < 243 
Bài 2. Thực hiện phép tính: 
1 1 1 1 1 3 5 7 ... 49
( ... )
4.9 9.14 14.19 44.49 89
    
    
Bài 3. a) Tìm x biết: 2x3x2  
 b) Tìm giá trị nhỏ nhất của A = x20072006x  Khi x thay đổi 
Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm 
đối diện nhau trên một đường thẳng. 
Bài 5. Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM. Trên tia 
đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = 
CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh: 
AE = BC 
Ba ̣n đó tải tài liệu tại: Xuctu.com – Sách tham khảo tại: https://goo.gl/uUHO1C 
Đáp án toán 7 
Bài 1. Tìm giá trị n nguyên dương: (4 điểm mỗi câu 2 điểm) 
 a) 
1
.16 2
8
n n ; => 24n-3 = 2n => 4n – 3 = n => n = 1 
 b) 27 33 n = 4 
Bài 2. Thực hiện phép tính: (4 điểm) 
1 1 1 1 1 3 5 7 ... 49
( ... )
4.9 9.14 14.19 44.49 89
    
    
 = 
1 1 1 1 1 1 1 1 1 2 (1 3 5 7 ... 49)
( ... ).
5 4 9 9 14 14 19 44 49 12
     
        
 = 
1 1 1 2 (12.50 25) 5.9.7.89 9
( ).
5 4 49 89 5.4.7.7.89 28
 
     
Bài 3. (4 điểm mỗi câu 2 điểm) 
 a) Tìm x biết: 2x3x2  
 Ta có: x + 2  0 => x  - 2. 
 + Nếu x  - 
2
3
 thì 2x3x2  => 2x + 3 = x + 2 => x = - 1 (Thoả mãn) 
 + Nếu - 2  x < - 
2
3
 Thì 2x3x2  => - 2x - 3 = x + 2 => x = - 
3
5
(Thoả mãn) 
 + Nếu - 2 > x Không có giá trị của x thoả mãn 
 b) Tìm giá trị nhỏ nhất của A = x20072006x  Khi x thay đổi 
 + Nếu x < 2006 thì: A = - x + 2006 + 2007 – x = - 2x + 4013 
 Khi đó: - x > -2006 => - 2x + 4013 > – 4012 + 4013 = 1 => A > 1 
 + Nếu 2006  x  2007 thì: A = x – 2006 + 2007 – x = 1 
 + Nếu x > 2007 thì A = x - 2006 - 2007 + x = 2x – 4013 
 Do x > 2007 => 2x – 4013 > 4014 – 4013 = 1 => A > 1. 
 Vậy A đạt giá trị nhỏ nhất là 1 khi 2006  x  2007 
Ba ̣n đó tải tài liệu tại: Xuctu.com – Sách tham khảo tại: https://goo.gl/uUHO1C 
Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm 
đối diện nhau trên một đường thẳng. (4 điểm mỗi) 
 Gọi x, y là số vòng quay của kim phút và kim giờ khi 10giờ đến lúc 2 kim đối nhau 
trên một đường thẳng, ta có: 
 x – y = 
3
1
 (ứng với từ số 12 đến số 4 trên đông hồ) 
 và x : y = 12 (Do kim phút quay nhanh gấp 12 lần kim giờ) 
 Do đó: 
33
1
11:
3
1
11
yx
1
y
12
x
1
12
y
x


 
 => x = 
11
4
x)vũng(
33
12
 (giờ) 
 Vậy thời gian ít nhất để 2 kim đồng hồ từ khi 10 giờ đến lúc nằm đối diện nhau trên 
một đường thẳng là 
11
4
 giờ 
Bài 5. Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM. Trên tia đối 
tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, 
qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh: AE = 
BC (4 điểm mỗi) 
 Đường thẳng AB cắt EI tại F 
 ABM = DCM vì: 
 AM = DM (gt), MB = MC (gt), 
 AMB = DMC (đđ) => BAM = CDM 
 =>FB // ID => IDAC 
 Và FAI = CIA (so le trong) (1) 
 IE // AC (gt) => FIA = CAI (so le trong) (2) 
 Từ (1) và (2) => CAI = FIA (AI chung) 
 => IC = AC = AF (3) 
 và E FA = 1v (4) 
 Mặt khác EAF = BAH (đđ), 
D 
 B 
A 
 H 
 I 
 F 
 E 
 M 
Ba ̣n đó tải tài liệu tại: Xuctu.com – Sách tham khảo tại: https://goo.gl/uUHO1C 
 BAH = ACB ( cùng phụ ABC) 
 => EAF = ACB (5) 
 Từ (3), (4) và (5) => AFE = CAB 
 =>AE = BC 

Tài liệu đính kèm:

  • pdfde_thi_olympic_mon_toan_lop_7_nam_hoc_2016_2017.pdf