Đề thi khảo sát học sinh giỏi lớp 8 môn học: Toán

doc 3 trang Người đăng minhphuc19 Lượt xem 920Lượt tải 2 Download
Bạn đang xem tài liệu "Đề thi khảo sát học sinh giỏi lớp 8 môn học: Toán", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề thi khảo sát học sinh giỏi lớp 8 môn học: Toán
PHềNG GD&ĐT
Đề thi khảo sát hsg lớp 8
Môn : Toán 
Thời gian: 120 phút (không kể thời gian giao đề)
Ngày:./
Câu 1:
Tìm số m, n để: 
Rút gọn biểu thức: 
	 M = 
Câu 2:
Tìm số nguyên dương n để n5 +1 chia hết cho n3 +1.
Giải bài toán nến n là số nguyên.
Câu 3:
	Cho tam giác ABC, các đường cao AK và BD cắt nhau tại G. Vẽ đường trung trực HE và HF của AC và BC. Chứng minh rằng BG = 2HE và AG = 2HF.
Câu 4:
	Trong hai số sau đây số nào lớn hơn:
	a = ; b = 
Trường thcs tứ trưng
Đề thi khảo sát hsg lớp 8
Môn : Toán 
Thời gian: 120 phút (không kể thời gian giao đề)
Ngày:./
Câu 1:
Tìm số m, n để: 
Rút gọn biểu thức: 
	 M = 
Câu 2:
Tìm số nguyên dương n để n5 +1 chia hết cho n3 +1.
Giải bài toán nến n là số nguyên.
Câu 3:
	Cho tam giác ABC, các đường cao AK và BD cắt nhau tại G. Vẽ đường trung trực HE và HF của AC và BC. Chứng minh rằng BG = 2HE và AG = 2HF.
Câu 4:
	Trong hai số sau đây số nào lớn hơn:
	a = ; b = 
đáp án môn toán 8
Câu 1:	(3đ)
	a.	m =1 (0.75đ); n = -1 (0.75đ)
b.(1.5đ) Viết mỗi phân thức thành hiệu của hai phân thức 
	(áp dụng câu a)
	(0.25đ)
	(0.25đ)
	(0.25đ)
	(0.25đ)
	Đổi dấu đúng và tính được : 
	M = 	(0.5đ)
Câu 2:	(2.5đ)
(1.5đ)
	Biến đổi: 
	n5 + 1 n3 + 1 n2(n3 + 1) – (n2 –1) n3 + 1	(0.5đ)
	(n + 1) (n – 1) (n + 1)(n2 - n + 1)	(0.25đ)
	n – 1 n2 – n + 1 (vì n + 1 0 )	(0.25đ)
	Nếu n = 1 thì ta được 0 chia hết cho 1	(0.25đ)
	Nếu n > 1 thì n – 1 < n(n – 1) + 1 = n2 – n +1
 Do đó không thể xảy ra quan hệ n – 1 chia hết cho n2 – n +1 trên tập hợp số nguyên dương
 Vậy giá trị duy nhất của n tìm được là 1	(0.25đ)
 n – 1 n2 – n +1
n(n – 1) n2 – n + 1
	n2 – n n2 – n + 1
	( n2 – n + 1) – 1 n2 – n + 1
	 1 n2 – n + 1	(0.5đ)
 Có hai trường hợp:
	n2 – n + 1 = 1 n(n – 1) = 0 n = 0 hoặc n = 1
Các giá trị này đều thoả mãn đề bài	(0.25đ)
	n2 – n + 1 = - 1 n2 – n + 2 = 0 vô nghiệm 
Vậy n = 0, n = 1 là hai số phải tìm	(0.25đ)
Câu 3:	(3đ) (Hình *)
	Lấy I đối xứng với C qua H, kẻ AI và BI, ta có HE là đường trung bình của DACI nên HE//AI và HE = 1/2IA (1)	(0.25đ)
 Tương tự trong DCBI : HF//IB và HF = 1/2IB (2) 	(0.25đ)
Từ BG^AC và HE^AC BG//IA (3) 	(0.25đ)
Tương tự AK^BC và HF^BC AG//IB (4)	(0.25đ)
Từ (3) và (4) BIAG là hình bình hành	(0.25đ)
Do đó BG = IA và AG = IB	(0.5đ)
Kết hợp với kết quả (1) và (2) BG = 2HE và AG = 2HF	(0.5đ)
K
D
A
I
C
F
B
E
G
H
Hình *
Câu 4:	(1.5đ)
Ta có: 	19702 – 1 < 19702
	1969.1971 < 19702 
	 (*)	(0.25đ)
Cộng 2.1970 vào hai vế của (*)
 ta có:
	(0.25đ)
	(0.25đ)
	(0.25đ)
Vậy: 	(0.25đ)

Tài liệu đính kèm:

  • docĐề KS-HSG Toán 8 năm 2012-2013.doc