Toỏn 7 Kỳ thi chọn thi HSG - năm học 2016-2017 Thời gian : 12o phỳt . Đề số 9: Thời gian làm bài: 120 phút Bài1( 3 điểm) a, Tính: A = b, Tính nhanh: (18.123 + 9.436.2 + 3.5310.6) : (1 + 4 +7 ++ 100 – 410) Bài 2: (2đ).Tìm 3 số nguyên dương sao cho tổng các nghịch đảo của chúng bằng 2. Bài 3 : ( 3đ ) Tìm x, biết: a. - x > 1. b. +5x = 4x-10 Bài 4 (4 điểm). Cho a.Viết biểu thức A dưới dạng không có dấu giá trị tuyệt đối. b.Tìm giá trị nhỏ nhất của A. c, Với giá trị nào của x thì biểu thức : P = -x2 – 8x +5 . Có giá trị lớn nhất . Tìm giá trị lớn nhất đó ? Bài 5: (2 đ). Cần bao nhiêu chữ số để đánh số trang một cuốn sách dày 234 trang Bài 6: ( 3 điểm) Cho ABC vuông tại B, đường cao BE Tìm số đo các góc nhọn của tam giác , biết EC – EA = AB. Câu 7: (3 điểm ) . Cho tam giác cân ABC, có =1000. Kẻ phân giác trong của góc CAB cắt AB tại D. Chứng minh rằng: AD + DC =AB -------------------------------------------- hết ------------------------------------------- Lời giải Đáp án đề số 9 Bài 1: 3 điểm a, Tính: A = = b, 1,5 điểm Ta có: +) 1 + 4 +7 ++ 100 = ( 1+100) + ( 4 + 97) +.+ ( 49+ 52) = 101 . 34 = 1434 34 cặp +) 1434 – 410 = 1024 +) ( 18 . 123 + 9 . 436 . 2 + 3 . 5310. 6 ) = 18 . ( 123 + 436 + 5310 ) = 18 . 5869 = 105642 Vậy A = 105642 : 1024 103,17 Bài 2: 2 Điểm Giọi số cần tìm là x, y, z. Số nhỏ là x , số lớn nhất là z. Ta có: x y z (1) Theo giả thiết: (2). Do (1) nên z = Vậy: x = 1. Thay vào (2) , được: Vậy y = 2. Từ đó z = 2. Ba số cần tìm là 1; 2; 2. Bài 3 : a/. - x = 15. b/. - x > 1. = x + 15 > x + 1 * Trường hợp 1: x - , ta có: * Trường hợp 1: x , ta có: 4x + 3 = x + 15 3x - 2 > x + 1 x = 4 ( TMĐK). x > ( TMĐK). * Trường hợp 2: x < - , ta có: * Trường hợp 2: x < , ta có: 4x + 3 = - ( x + 15) 3x – 2 < - ( x + 1) x = - ( TMĐK). x < ( TMĐK) Vậy: x = 4 hoặc x = - . Vậy: x > hoặc x < . c/. 5 Bài 4: 2 Điểm Có 9 trang có 1 chữ số. Số trang có 2 chữ số là từ 10 đến 99 nên có tất cả 90 trang. Trang có 3 chữ số của cuốn sách là từ 100 đến 234, có tất cả 135 trang. Suy ra số các chữ số trong tất cả các trang là: 9 + 2 . 90 + 3. 135 = 9 + 180 + 405 = 594 Bài 5.a. Xét 2 trường hợp : * ta được : A=7. * ta được : A = -2x-3. b. Xét hay A > 7. Vậy : Amin = 7 khi . c, Ta có P = -x2 –8x + 5 = - x2 –8x –16 +21 = -( x2 +8x + 16) + 21 = -( x+ 4)2 + 21; Do –( x+ 4)2 0 với mọi x nên –( x +4)2 +21 21 với mọi x . Dấu (=) xảy ra khi x = -4 , Khi đó P có giá trị lớn nhất là 21. Bài 6 : 3 Điểm Trên tia EC lấy điểm D sao cho ED = EA. Hai tam giác vuông ABE = DBE ( EA = ED, BE chung) Suy ra BD = BA ; . Theo giả thiết: EC – EA = A B Vậy EC – ED = AB Hay CD = AB (2) Từ (1) và (2) Suy ra: DC = BD. Vẽ tia ID là phân giác của góc CBD ( I BC ). Hai tam giác: CID và BID có : ID là cạnh chung, CD = BD ( Chứng minh trên). ( vì DI là phân giác của góc CDB ) Vậy CID = BID ( c . g . c) . Gọi là = 2 = 2 ( góc ngoài của BCD) mà ( Chứng minh trên) nên = 2 = 900 = 300 . Do đó ; = 300 và = 600 Câu 7-(3 điểm) ABC cân, ACB =1000=> CAB = CBA =400. Trên AB lấy AE =AD. Cần chứng minh AE+DC=AB (hoặc EB=DC) AED cân, DAE = 400: 2 =200. => ADE =AED = 800 =400+EDB (góc ngoài của EDB) => EDB =400 => EB=ED (1) Trên AB lấy C’ sao cho AC’ = AC. C CAD = C’AD ( c.g.c) D AC’D = 1000 và DC’E = 800. Vậy DC’E cân => DC’ =ED (2) Từ (1) và (2) có EB=DC’. A C E B Mà DC’ =DC. Vậy AD +DC =AB.
Tài liệu đính kèm: