Mã ký hiệu Đ03T-09-HSG9 ĐỀ THI CHỌN HSG LỚP 9 Năm học: 2008-2009 MÔN THI: TOÁN Thời gian làm bài: 150 phút. ( Đề này gồm 06 câu, 01 trang) Câu 1: (4 điểm) Cho P(x) là một đa thức bậc 4 có hệ số cao nhất là 1, thoả mãn P(1) =3, P(3) =11 P(5) = 27. Hãy tính P(-2) + 7P(6). Câu 2: (4 điểm) Giải hệ phương trình Câu 3: (2 điểm) Cho 2x+4y + 1. Tìm giá trị nhỏ nhất của biểu thức A = x2 + y2 Câu 4: ( 2 điểm) Tìm các ngiệm nguyên của phương trình : x(x+1)(x+2)(x+3) = y2 Câu 5: (5 điểm) Cho tam giác đều ABC nội tiếp đường tròn (O, R), M là điểm chuyển động trên cung BC. Vẽ đường kính AE cắt BC tại H, MA cắt BC tại I. Chứng minh MA = MB + MC Chứng minh: Xác định vị trí của M để tổng MA + MB + MC đạt giá trị lớn nhất. Câu 6 : (3 điểm) Trên dây cung AB của đường tròn (O) lấy 2 điểm P và Q sao cho AP = PQ = QB vẽ bán kính OK qua P và bán kính OL qua Q. Chứng minh: cung AKcung KL ...........................Hết........................... Mã ký hiệu HD03T-09-HSG9 HƯỚNG DẪN CHẤM ĐỀ THI CHỌN HSG LỚP 9 Năm học: 2008-2009 MÔN THI: TOÁN Thời gian làm bài: 150 phút. 1212121112 Câu 1: (4 điểm) Xét đa thức f(x) = x2+ 2 thoả mãn f(1) = 3, f(3) = 11, f(5) = 27 Đặt Q(x) = P(x) – f(x) Ta có Q(1) = P(1) – f(1) = 0 Q(3) = P(3) – f(3) = 0 Q(5) = P(5) – f(5) = 0 Vậy Q(x) nhận 1;3;5 làm nghiệm Do P(x) là đa thức bậc 4 có hệ số bậc cao nhất là 1 nên Q(x) cũng là đa thức bậc 4 có hệ số bậc cao nhất là 1. Vậy q(x) có dạng: Q(x) = (x – 1)(x – 3)(x – 5)(x – r) P(x) = Q(x) + f(x) Ta có P(-2) = (-2 – 1)(-2 – 3)(-2 -5)(-2 –r) + (-2)2 + 2 P(-2) = 3.5.7.2 + 3.5.7.r + 6 7P(6) = 7[(6 – 1)(6 – 3)(6 – 5)(6 – r) + 62 + 2] = 7[5.3.1(6 –r) + 36 + 2] = 3.5.6.7 – 3.5.7.r + 38.7 P(-2) + 7P(6) = 3.5.7(2 + 6) + 6 + 38.7 = 3.5.7.8 + 272 =840 + 272 = 1112 Câu 2. (4 điểm) Đặt x + y + z = t x + y = t – z, y + z = t – x Khi đó hệ đã cho có dạng (1) (2) (3) (4) Từ (2) ta có x = t2 – xt x + xt = t2x = Dễ thấy t -1 Từ (4) ta có z = với x t, zt , t0, t -1 Từ (3) y = t2 – tz + t = Vậy ta có: t(4t – 1) = 0, vì t0 nên t = Từ đó chỉ ra Câu 3: (2 điểm) Ta có (2x + 4y)2 + ( 4x – 2y)2 = 4x2+ 16y2 +16xy + 16x2 + 4y2 –16xy = 20(x2+y2) Biết rằng (2x + 4y)2 + (4x – 2y)2 (2x +4y)2 Dấu “=” xảy ra 4x – 2y = 0 y = 2x 20(x2+ y2) 1 (do 2x +4y = 1) A = x2+ y2 min A = Câu 4: (2 điểm) x(x+1)(x+2)(x+3) = y2 (1) Nếu y cũng thoả mãn PT thì -y cũng thoả mãn PT (1) Đặt x2+3x+1= a, ta được: Suy ra a+y = a-y, do đó y = 0 Thay vào (1) được: x1=0, x2= -1, x3= -2, x4= -3 Vậy PT đã cho có 4 nghiệm: (0;0), (-1;0), (-2;0), (-3;0) Câu 5: ( 5 điểm) a) (2 điểm) Trên tia MA lấy điểm D sao cho MD = MB rBDM cân tại M có BMD = ACB = 600 ( Góc nội tiếp cùng chắn cung AB) rBDM đều * Chỉ ra rMBC = rDBA (c.g.c) MC = DA MA = DA + DM = MC + DM = MC + MB (do MB = MD) b) (1,5 đ) Ta có Chỉ ra rIAC rIBM (do MA = MB + MC) c) (1,5 điểm) Ta có MA + MB + MC = 2MA (do MA = MB + MC) Mà MA AE = 2R (do AM ME vì ( ) MA + MB + MC 4R Tổng MA + MB + MC lớn nhất bằng 4R M E Bài 6: (3 điểm) Vẽ đường kính AN Chỉ ra được OP là đường trung bình của rAQN PO // QN (đồng vị) (So le trong) rONQ có OQ < ON Chỉ ra cung AK cung KL (1 điểm) (0,5 điểm) (0,5 điểm) (0,25điểm) (0,25điểm) (0,25điểm) (0,25điểm) (0,25điểm) (0,25điểm) (0,5 điểm) (1 điểm) (0,5 điểm) (0,25 đ) (0,5 điểm) (0,25điểm) 0,25đ 0,25 đ 0,5 đ 0,5 đ 0,5 đ 0,5 đ 0,5 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25đ 0,25 đ 0,5 đ 0.25 đ 0.25 đ 0.25 đ 0,25 đ 0,25 đ 0,25 đ 0,5 đ 0,25 đ 0,5 đ 0.25 đ 0.25 đ 0. 5 đ 0,25 đ 0,25 đ 0,25 đ 0,25đ 0,5đ 0,25 đ 0,25 đ 0,25 đ 0,5 đ 0,25đ 0,25 đ 0,5 đ
Tài liệu đính kèm: