Đề thi chọn học sinh năng khiếu môn Toán Lớp 7 - Năm học 2010-2011 - Phòng GD & ĐT Sơn Dương (Có đáp án)

doc 3 trang Người đăng duyenlinhkn2 Ngày đăng 21/11/2023 Lượt xem 278Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi chọn học sinh năng khiếu môn Toán Lớp 7 - Năm học 2010-2011 - Phòng GD & ĐT Sơn Dương (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề thi chọn học sinh năng khiếu môn Toán Lớp 7 - Năm học 2010-2011 - Phòng GD & ĐT Sơn Dương (Có đáp án)
PHÒNG GD&ĐT SƠN DƯƠNG
Đấ̀ CHÍNH THỨC
đề chọn học sinh năng khiếu
NĂM HỌC 2010-2011
Mụn thi : Toỏn 7
Thời gian: 90 phỳt (Khụng kể thời gian giao đề)
Cõu 1( 6đ): Tỡm cỏc số x, y, z biết.
	a/ (x – 1)3 = - 8	b/ 
	c/ x - 3 = 0	d/ 12x = 15y = 20z và x + y + z = 48
Bài 2:(4 đ)
a) Thực hiện phộp tớnh: 
	b) Chứng minh rằng : Với mọi số nguyờn dương n thỡ : 
chia hết cho 10
Cõu 3:(3.5đ) 
a/ Tỡm số dư khi chia 22011 cho 31 
b/ Với a, b là cỏc số nguyờn dương sao cho a + 1 và b + 2007 chia hết cho 6. Chứng minh rằng: 4a + a + b chia hết cho 6
Câu 4( 2.5đ). Cho 2 đa thức 
 P = x + 2mx + m và
 Q = x + (2m+1)x + m
 Tìm m biết P (1) = Q (-1)
Cõu 5:(4đ) Cho tam giỏc ABC cú ba gúc nhọn, đường cao AH. Vẽ về phớa ngoài tam giỏc ABC cỏc tam giỏc ABE và ACF vuụng cõn tại A. Từ E và F kẻ đường vuụng gúc EK và FN với đường thẳng HA.
	a/ Chứng minh rằng: EK = FN.
	b/ Gọi I là giao điểm của EF với đường thẳng HA. Tỡm điều kiện của tam giỏc ABC để EF = 2AI.
-----------------------Hết-----------------------
HƯỚNG DẪN CHẤM chọn học sinh năng khiếu 
MễN: TOÁN 7
========================================
Cõu
Phần
Nội dung cần trỡnh bày
Điểm
1
(6đ)
a 1,5
(x – 1)3 = - 8 => x – 1 = - 2 => x = - 1 Vậy x = - 1 
1.5
b
1,5đ
 Điều kiện: x 
=> => (Thỏa món điều kiện)
Vậy x = 1 hoặc x = 3.
1.5
c
1,5đ
x - 3 = 0 Điều kiện x 0 
=> = 0 => x = 0 hoặc x = 9 (thỏa món điều kiện)
Vậy x = 0 hoặc x = 9
1.5
d
1,5đ
12x = 15y = 20z => => 
=> x = 20; y = 16; z = 12
1.5
2
(4đ)
a
2đ
b
2đ
a) 
b) = 
 =
 =
 = 10( 3n -2n-1)
Vậy 10 với mọi n là số nguyờn dương.
1 
1
1
1
3
(3.5đ)
a, 
2đ
Ta cú 25 = 32 1 (mod31) => (25)402 1 (mod31) 
=> 22011 2 (mod31). Vậy số dư khi chia 22011 cho 31 là 2.
2
b
1,5đ
Vỡ a nguyờn dương nờn ta cú 4a 1 (mod3) => 4a + 2 0 (mod3)
Mà 4a + 2 0 (mod2) => 4a + 2 6
Khi đú ta cú 4a + a + b = 4a + 2 + a +1 + b + 2007 – 2010 6
Vậy với a, b là cỏc số nguyờn dương sao cho a + 1 và b + 2007 chia hết cho 6 thỡ 4a + a + b chia hết cho 6
0,5
0,5
0,5
4 
2.5đ
Cho 2 đa thức 
 P = x + 2mx + m và
 Q = x + (2m+1)x + m
 Tìm m biết P (1) = Q (-1)
P(1) = 12 + 2m.1 + m2
 = m2 + 2m + 1
Q(-1) = 1 – 2m – 1 +m2
 = m2 – 2m 
Để P(1) = Q(-1) thì m2 + 2m + 1 = m2 – 2m 4m = -1 m = -1/4
1
1
0.5
5
(4đ)
0.5đ
Vẽ hỡnh và GT-KL đỳng, đẹp
0,5
a
2.5
Chứng minh KAE = HBA ( ch – gn) => EK = AH
Chứng minh NFA = HAC ( ch – gn) => FN = AH
Suy ra EK = FN 
1
1
0.5
b
1đ
Chứng minh KEI = NFI ( c.g.c) => EI = FI = 
Mà AI = (gt) => AI = EI = FI => IEA = IAE và IAF = IFA 
=> EAF = 900 => BAC = 900 
Vậy EF = 2AI khi tam giỏc ABC vuụng tại A
0,5
0,5
Ghi chỳ: Đỏp ỏn trờn chỉ là một trong những cỏch làm đỳng, nếu học sinh làm đỳng bằng cỏch khỏc cho điểm tối đa
Giỏo viờn ra đề
Lờ Minh Quảng

Tài liệu đính kèm:

  • docde_thi_chon_hoc_sinh_nang_khieu_mon_toan_lop_7_nam_hoc_2010.doc