PHềNG GD&ĐT PHÙ NINH đề thi CHỌN học sinh giỏi lớp 9 Năm học 2011 - 2012 Môn: Toán Thời gian: 150 phỳt (khụng kể thời gian giao đề) Bài 1 (4,0đ): a) Tìm số tự nhiên n để biểu thức sau có giá trị là số nguyên tố. A = n3 + n - n2 - 1 b) Tìm các số nguyên x để biểu thức sau có giá trị là một số chính phương chẵn. Bài 2 (4,0đ) Rút gọn các biểu thức a) .. b) (với 2 ;x3). Bài 3 (4 ,0 đ) Giải các phương trình sau. a) = 0 b) ( x2 - x +2011)3 = x6 - (x -2011)3 Bài 4 (6,0đ) Cho tứ giác ABCD có hai đường chéo AC vuông góc với BD, hạ BH vuông góc với CD (H CD). a) Nếu AB // CD và qua B kẻ (d) song song với AC cắt tia DC tại E.Khi đó tính độ dài AC biết BH = 4cm ; BD = 5cm. b) Nếu , . Tính diện tích tứ giác ABCD biết diện tích tam giác AOB bằng 4cm2. (O là giao điểm của AC và BD) Bài 5 (2,0đ) Cho 2 số thực dương x, y thỏa mãn: x3 + y4 x2 +y3. Chứng minh rằng: x2 + y3 x + y2 --------------------- Hết --------------------- Họ và tên thí sinh:................................................... Số báo danh :..............
Tài liệu đính kèm: