Đề khảo sát chọn hoc sinh giỏi lớp 9 THCS năm 2009 - 2010 môn: Giải toán trên máy tính cầm tay

doc 2 trang Người đăng minhphuc19 Lượt xem 695Lượt tải 0 Download
Bạn đang xem tài liệu "Đề khảo sát chọn hoc sinh giỏi lớp 9 THCS năm 2009 - 2010 môn: Giải toán trên máy tính cầm tay", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề khảo sát chọn hoc sinh giỏi lớp 9 THCS năm 2009 - 2010 môn: Giải toán trên máy tính cầm tay
PHÒNG GIÁO DỤC & ĐÀO TẠO
HUYỆN GIA LỘC
ĐỀ KHẢO SÁT CHỌN HOC SINH GIỎI 
LỚP 9 THCS NĂM 2009-2010
Môn : GIẢI TOÁN TRÊN MÁY TÍNH CẦM TAY
Thời gian: 120 phút
Câu1 (3 điểm):Tìm ước số chung lớn nhất (USCLN) và bội số chung nhỏ nhất (BSCNN) của 2 số sau : a= 7020112010 và b = 20112010.
Câu 2 (6 điểm). Tìm :
a) Chữ số tận cùng của số 29999	b) Chữ số hàng chục của số 29999
Câu 3 (6 điểm). Cho biểu thức: P(x) = 
	a) Tính giá trị của P(); P() 	b) Tìm x biết P(x) = 
Câu 4 (6 điểm):
a) Đặt S(n) = 1.2 + 2.3 + 3.4 +  + n(n + 1). Tính S(100) và S(2009).
b) Đặt P(n) = 1.2.3 + 2.3.3 + 3.4.5 +  + n(n + 1)(n+2).Tính P(100) và P(2009).
Câu 5 (5 điểm)Biết rằng (2 + x + 2x3)15 = a0 +a1x + a2x2 + a3x3 + . + a45x45. 
Tính S1 = a1 +a2 +a3 +  + a45 ; S2 = a0 +a2 +a4 +  + a44
Câu 6 (6 điểm):Cho dãy số sắp thứ tự ,biết và . Tính .
Câu 7 (6 điểm):Tìm giá trị của x, y thỏa mãn:
 ; 
Câu 8 (6 điểm):
	a) Bạn Toán gửi tiết kiệm một số tiền ban đầu là 2000000 đồng với lãi suất 0,58% một tháng (gửi không kỳ hạn). Hỏi bạn Toán phải gửi bao nhiêu tháng thì được cả vốn lẫn lãi bằng hoặc vượt quá 2600000 đồng ?
	b) Với cùng số tiền ban đầu nhưng số tháng gửi ít hơn số tháng ở câu a) là 1 tháng, nếu bạn Toán gửi tiết kiệm có kỳ hạn 3 tháng với lãi suất 0,68% một tháng, thì bạn Toán sẽ nhận được số tiền cả vốn lẫn lãi là bao nhiêu? (Biết rằng trong các tháng của kỳ hạn, chỉ cộng thêm lãi chứ không cộng vốn và lãi tháng trước để tính lãi tháng sau. Hết một kỳ hạn, lãi sẽ được cộng vào vốn để tính lãi trong kỳ hạn tiếp theo).
Câu 9 (6 điểm):
	Để đo chiều cao từ mặt đất đến đỉnh cột cờ (như hình vẽ), người ta cắm 2 cọc bằng nhau MA và NB cao 1,5 m (so với mặt đất) song song, cách nhau 10 m và thẳng hàng so với tim của cột cờ. Đặt giác kế đứng tại A và tại B để nhắm đến đỉnh cột cờ, người ta đo được các góc lần lượt là 510 49'12" và 45039' so với phương song song với mặt đất. Hãy tính gần đúng chiều cao đó. 
 HƯỚNG DẪN CHẤM KHẢO SÁT GIẢI TOÁN TRÊN MÁY TÍNH CẦM TAY (ĐỢT 1)
HUYỆN GIA LỘC-Năm học 2009-2010
Câu 1: Đáp số 10
Câu 2: Có 
Do đó Vậy cả a) và b) đều có đáp số là 8
Câu 3: Rút gọn được P(x)= ;
Tìm x để P(x) = 
Câu 4:Có 
Nên= 
P(100)=26527650; P(2009)= 
Ta có Và 149748.2012= 3011731776;2030.2012.= 4084360000000
 Cộng tay lại ta có: P(2009)= 4087371731776
Câu 5Đặt P(x)= đa thức đã choCó S1 = P(1) = ; có ;515625.5 = 2578125
 6130.5.= 30515000000 Cộng lại ta có S1 = 30517578125
 ; S2 = 
Câu 6Từ giả thiết rút ra: Từ đó tính được: Tính xây dựng phép lặp; kết quả: 
Câu 7:Pt 1 có dạng ; tính được A = vậy x = 45,92416672
Pt thứ 2 có dạng ; tính được C=
Câu 8: Lập luận để ra được công thức tính tiền cả lãi và gốc sau n tháng gửi không kỳ hạn: . Từ đó suy ra hay phải ít nhất 46 tháng thì mới có được số tiền cả gốc lẫn lãi không nhỏ hơn 2, 6 triệu đồng
- Lập luận để có công thức n là số quý gửi tiền; Pn là số tiền cả gốc và lãi sau n quý( 1 quý 3 tháng); (46-1) tháng = 15 quýTừ đó có ( Thấy lợi ích kinh tế)
Câu 9 Gọi H là chân cột cờ ( giao của AB và cột cờ , như vậy chiều cao cột cờ sẽ bằng CH +1,5m
Đặt ;Xét tam giác vuông AHC có: AH = tương tự có: BH = .
Do đó 10=AB= BH- AH = HC() hay HC= 52,299354949 (m). 
Vậy chiều cao cột cờ: 52,299354949 + 1,5 = 53,79935495 (m)( viết dấu bằng cho tiện).

Tài liệu đính kèm:

  • doc25.doc