Đề khảo sát chất lượng học kỳ I môn Toán 12

pdf 4 trang Người đăng minhhieu30 Lượt xem 812Lượt tải 0 Download
Bạn đang xem tài liệu "Đề khảo sát chất lượng học kỳ I môn Toán 12", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề khảo sát chất lượng học kỳ I môn Toán 12
 Trang 1/4 mã đề 132 
SỞ GIÁO DỤC VÀ ĐÀO TẠO 
NAM ĐỊNH 
ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC KỲ I 
NĂM HỌC 2016 – 2017 
Môn: Toán – lớp 12 
(Thời gian làm bài: 90 phút) 
Đề khảo sát gồm 04 trang 
Câu 1. Tìm tập xác định D của hàm số ( )
2016
2 3 2 .y x x
-
= - + 
 A. .D = ¡ B. { }\ 1;2 .D = ¡
C. ( )1;2 .D = D. ( ) ( );1 2; .D = - ¥ È + ¥ 
Câu 2. Cho hàm số 3 23 2y x x= + - . Khẳng định nào sau đây là khẳng định đúng? 
A. Hàm số đồng biến trên khoảng ( ); 2- ¥ - và ( )0;+ ¥ . 
B. Hàm số nghịch biến trên khoảng ( ); 2- ¥ - và ( )0;+ ¥ . 
C. Hàm số đồng biến trên khoảng ( );0- ¥ và ( )2;+ ¥ . 
D. Hàm số nghịch biến trên khoảng ( )2;1- . 
Câu 3. Hỏi hàm số 22y x x= - đồng biến trên khoảng nào? 
A. ( );2 .- ¥ B. ( )0;1 . C.( )1; 2 . D. ( )1; .+ ¥ 
Câu 4. Cho hàm số 4 2
1 1
3
4 2
y x x= - + - . Khẳng định nào sau đây là khẳng định đúng? 
A. Hàm số đạt cực tiểu tại 0.x = B. Hàm số đạt cực tiểu tại 1.x = 
C. Hàm số đạt cực đại tại 0.x = D. Hàm số đạt cực tiểu tại 3.x = - 
Câu 5. Xét ( )f x là một hàm số tùy ý. Khẳng định nào sau đây là khẳng định đúng? 
A. Nếu ( )f x có đạo hàm tại 0x và đạt cực đại tại 0x thì ( )0' 0f x = . 
B. Nếu ( )0' 0f x = thì ( )f x đạt cực trị tại 0.x x= 
C. Nếu ( )0' 0f x = và ( )0" 0f x > thì ( )f x đạt cực đại tại 0.x x= 
D. Nếu ( )f x đạt cực tiểu tại 0x x= thì ( )0" 0.f x < 
Câu 6. Tìm tiệm cận ngang của đồ thị hàm số 
2 1
.
1
x
y
x
+
=
-
A. 2.y = B. 2.y = - C. 1.x = D. 2.x = - 
Câu 7. Hỏi phương trình 
22 5 1 12
8
x x- - = có bao nhiêu nghiệm? 
A. 0. B. 1. C. 2. D. 3. 
Câu 8. Giải phương trình 
3
log ( 4) 0x - = . 
A. 1.x = B. 6.x = C. 5.x = D. 4.x = 
Câu 9. Hỏi đồ thị hàm số 
2
2
1
2
x
y
x x
-
=
+
 có bao nhiêu đường tiệm cận đứng? 
A. 1. B. 2. C. 3. D. 0. 
Câu 10. Tìm giá trị nhỏ nhất của hàm số 
1
2 3
x
y
x
-
=
-
 trên 0;1é ùê úë û
. 
A. 
0;1
min 0.y
é ù
ê úë û
= B. 
0;1
1
min .
3
y
é ù
ê úë û
= - C. 
0;1
min 1.y
é ù
ê úë û
= - D. 
0;1
min 2.y
é ù
ê úë û
= - 
Câu 11. Tìm tất cả các giá trị thực của tham số m sao cho hàm số 3 23 3 1y x mx m= - + + có 2 điểm cực trị. 
A. 0m > B. 0m < C. 0m ³ D. 0m ¹ 
Câu 12. Khẳng định nào trong các khẳng định sau đây là sai? 
 A. Đồ thị của hàm số lẻ nhận gốc tọa độ làm tâm đối xứng. 
 B. Đồ thị của hàm số chẵn nhận trục tung làm trục đối xứng. 
 C. Đồ thị của hàm số bậc 3 luôn có tâm đối xứng. 
 D. Đồ thị của hàm số bậc 3 luôn nhận gốc tọa độ làm tâm đối xứng. 
 ĐỀ CHÍNH THỨC 
 MÃ ĐỀ: 132 
 Trang 2/4 mã đề 132 
Câu 13. Tính đạo hàm của hàm số 1 23 xy -= . 
 A. 1 2' ( 2).3 .xy -= - B. 1 2' ( 2 ln 3).3 .xy -= - C. 
1 2' 3 . ln 3.xy -= D. ( ) 2' 1 2 3 .xy x -= - 
Câu 14. Tìm giá trị lớn nhất của hàm số 2xy x e= + trên đoạn 0;1é ùê úë û
. 
 A. 1. B. 2 1.e + C. 2.e D. 2e. 
Câu 15. Tìm tập xác định D của hàm số y = 
2
log 6 .x- 
 A. { }\ 6 .D = ¡ B. ( )6; .D = + ¥ C. ( ;6 .D ù= - ¥ úû D. ( ); 6 .D = - ¥ 
Câu 16. Cho 0a > , 1a ¹ , ,x y là 2 số dương. Khẳng định nào sau đây là khẳng định đúng? 
A. 
log
log .
log
a
a
a
xx
y y
= B. ( )
log
log .
log
a
a
a
x
x y
y
- = 
C. log log log .
a a a
x
x y
y
= - D. ( )log log log .a a ax y x y- = - 
Câu 17. Cho 1a > . Khẳng định nào sau đây là khẳng định đúng? 
 A. 3
5
1
.a
a
- >
B. 
1
3 .a a> C. 2016 2017
1 1
.
a a
< D. 
3 2
1.
a
a
> 
Câu 18. Tính đạo hàm của hàm số 
3
log (2 2)y x= - . 
 A. 
1
' .
(2 2) ln 3
y
x
=
-
 B. 
1
' .
( 1) ln 3
y
x
=
-
 C. 
1
' .
1
y
x
=
-
 D. 
1
' .
2 2
y
x
=
-
Câu 19. Cho hàm số 4xy = . Khẳng định nào sau đây là khẳng định sai? 
A. Hàm số luôn đồng biến trên ¡ . 
B. Hàm số có tập giá trị là ( )0; .+ ¥ 
C. Đồ thị hàm số nhận trục Ox làm tiệm cận ngang. 
D. Đồ thị hàm số luôn đi qua điểm có tọa độ ( )1;0 . 
Câu 20. Đặt 
5 5
log 4 , log 3a b= = . Hãy biểu diễn 
25
log 12 theo a và b . 
A. ( )2 .a b+ B. .
2
ab
 C. .
2
a b+
 D.2 .ab 
Câu 21. Giải bất phương trình ( ) ( )2 22 log 1 log 5 1.x x- £ - + 
 A. 1 3.x< < B. 1 3.x£ £ C. 3 3.x- £ £ D. 1 3.x< £ 
Câu 22. Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số 
được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào? 
A. 
4 2y 4 3.x x= - + B. 4y 4 ² 3.x x= - + - 
C. 
4 2y 4 5.x x= + - D. 4y 4 ² 3.x x= - + + 
Câu 23. Một người gửi vào ngân hàng 100 triệu đồng với lãi suất 0, 5% một tháng, sau mỗi tháng lãi suất được nhập vào vốn. 
Hỏi sau một năm người đó rút tiền thì tổng số tiền người đó nhận được là bao nhiêu? 
 A. 12100.(1, 005) (triệu đồng). B. 12100.(1 12 0, 005)+ ´ (triệu đồng). 
 C.100 1, 005´ (triệu đồng). D. ( )
12
100. 1, 05 (triệu đồng). 
Câu 24. Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số 3 23 9y x x x m= - - + cắt trục hoành tại ba điểm 
phân biệt. 
 A. 5 27.m- 
y 
x 
 Trang 3/4 mã đề 132 
Câu 25. Tìm tất cả các giá trị thực của tham số m sao cho phương trình 4 22 3x x m- - = có 4 nghiệm phân biệt. 
 A. 1 1.m- - 
Câu 26. Tìm tất cả các giá trị thực của tham số m sao cho hàm số 
1mx
y
x m
+
=
+
 đồng biến trên khoảng ( )1;+ ¥ . 
A. 1m . B. 1.m > 
C. 1m ³ . D. 1 1.m- < < 
Câu 27. Tìm tất cả các giá trị thực của tham số m sao cho hàm số 3 23y x x mx m= - + - + nghịch biến trên ¡ . 
A. 3.m > B. 3.m < C. 3m ³ . D. 3m £ . 
Câu 28. Tìm tất cả các giá trị thực của tham số m sao cho hàm số 3 23 1y x x mx= - + - có hai điểm cực trị 
1 2
, x x thỏa 
mãn 2 2
1 2
3.x x+ =
A. 3.- B. 3. C. 
3
.
2
- D. 
3
.
2
Câu 29. Tìm tất cả các giá trị thực của tham số m sao cho hàm số ( ) ( )3 23 2 1 12 5y x m x m x= - + + + đồng biến trên trên 
khoảng ( )4;+ ¥ . 
 A. 
29
.
36
m > B. 
29
.
36
m ³ C. 
29
.
36
m £ D. 
29
.
36
m < 
Câu 30. Cho 9 9 14x x-+ = . Tính giá trị của biểu thức K = 
8 3 3
1 3 3
x x
x x
-
-
+ +
- -
. 
 A. 
5
.
2
- B. 
4
.
5
 C. 4.- D. 2. 
Câu 31. Tìm tất cả các giá trị thực của tham số m sao cho hàm số 3 2( 1) 3 1y x m x mx= + - - + đạt cực trị tại điểm 
0
1. x = 
 A. 1.m = - B. 1.m = C. 2.m = D. 2.m = - 
Câu 32. Tìm tất cả các giá trị thực của tham số m sao cho hàm số 4 2 22 + y x mx m m= + + có đúng một điểm cực trị. 
 A. 0.m ³ B. 0.m > C. 0.m £ D. 0.m < 
Câu 33. Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số 4 22 2y x mx m= - + có ba điểm cực trị tạo thành 
tam giác có diện tích bằng 1 . 
A. 
5
1
.
4
m = B. 3.m = C. 1.m = - D. 1.m = 
Câu 34. Xét hai số thực ,x y thỏa mãn 2 2 2x y+ = . Tìm giá trị lớn nhất M của biểu thức 3 32( ) 3 .P x y xy= + - 
 A. 
11
.
2
M = B. 
13
.
2
M = C. 
15
.
2
M = D. 
17
.
2
M = 
Câu 35. Hỏi hình mười hai mặt đều có bao nhiêu đỉnh? 
 A. Mười hai. B. Mười sáu. C. Hai mươi. D. Ba mươi. 
Câu 36. Số mặt phẳng đối xứng của khối tứ diện đều là: 
 A. 9. B. 2. C. 6. D. 3. 
Câu 37. Cho hình chóp .S ABCD có đáy ABCD là hình vuông cạnh a ; ( )SA ABCD^ và 3SB a= . Tính thể tích khối 
chóp . .S ABCD 
 A. 
32
.
2
a
 B. 
32 .a C. 
32
.
3
a
 D.
32
.
6
a
Câu 38. Cho khối lăng trụ tam giác đều, độ dài tất cả các cạnh bằng a . Tính thể tích khối lăng trụ đó. 
 A. 
32 2
.
3
a
 B. 
3
.
3
a
 C.
32
.
3
a
 D. 
33
.
4
a
Câu 39. Cho hình chóp tam giác đều .S ABC có cạnh đáy bằng a , cạnh bên bằng 2a . Tính thể tích khối chóp .S ABC . 
 A.
311
.
96
a
 B. 
311
.
4
a
 C. 
3
.
3
a
 D. 
311
.
12
a
Câu 40. Cho hình chóp .S ABCD có đáy ABCD là hình chữ nhật, biết 2 ; AB a AD a= = . Hình chiếu của S lên đáy là 
trung điểm H của cạnh AB , góc tạo bởi SC và đáy là 045 . Tính thể tích khối chóp S.ABCD. 
 A. 
32 2
.
3
a
 B. 
3
.
3
a
 C. 
32
.
3
a
 D. 
33
.
2
a
 Trang 4/4 mã đề 132 
Câu 41. Cho hình lập phương . ’ ’ ’ ’ABCDA BC D có cạnh bằng a . Tính thể tích của tứ diện ’ ’.ACD B 
 A. 
36
.
4
a
 B. 
32
.
3
a
 C. 
3
.
4
a
 D. 
3
.
3
a
Câu 42. Cho hình chóp .S ABC có đáy ABC là tam giác vuông cân tại B , AB a= . Gọi I là trung điểm AC , tam giác 
SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp .S ABC , biết góc giữa SB và mặt phẳng 
đáy bằng 045 . 
 A. 
32
.
12
a
 B. 
33
.
12
a
 C. 
32
.
4
a
 D. 
33
.
4
a
Câu 43. Cho khối trụ có thể tích bằng 24p . Hỏi nếu tăng bán kính đường tròn đáy của khối trụ đã cho lên 2 lần thì thể tích khối 
trụ mới bằng bao nhiêu? 
 A. 96 .p B. 48 .p C. 72 .p D. 12 .p 
Câu 44. Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a . Tính diện 
tích toàn phần của hình trụ đó. 
 A. 23 .ap B. 
227
.
2
ap
 C. 
23
.
2
ap
 D.
213
.
6
ap
Câu 45. Cho một khối trụ có khoảng cách giữa hai đáy bằng 10, biết diện tích xung quanh của khối trụ bằng 80p . Tính thể tích 
của khối trụ đó. 
 A. 
640
.
3
p
 B. 640 .p C. 
160
.
3
p
 D. 160 .p 
Câu 46. Cho hình nón có bán kính đáy là 4a , chiều cao là 3a . Tính diện tích toàn phần của hình nón đó. 
 A. 236 .ap B. 220 .ap C. 215 .ap D. 
224 .ap 
Câu 47. Cắt một hình nón bởi một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều cạnh bằng a . Tính thể tích 
của khối nón tương ứng. 
 A. 33 .ap B. 
32 3
.
9
ap
 C. 
33
.
24
ap
 D.
33
.
8
ap
Câu 48. Một máy bơm nước có ống bơm hình trụ đường kính bằng ( )50 cm và tốc độ dòng nước chảy trong ống là ( )0, 5 m/ s . 
Hỏi trong một giờ máy bơm đó bơm được bao nhiêu nước? (giả sử nước lúc nào cũng đầy ống). 
A. ( )3
225
m .
6
p
 B. ( )3225 m .p C ( )3450 m .p D. ( )3
225
m .
2
p
Câu 49. Cho hình chóp .S ABC có 
· · · 0AS ASC CS 60B B= = = , 3, 6, 9SA SB SC= = = . Tính khoảng cách d từ C đến 
mặt phẳng ( )SAB . 
 A. 9 6.d = B. 2 6.d = C. 
27 2
.
2
d = D. 3 6.d = 
Câu 50. Cho lăng trụ ' ' 'ABCA B C , đáy là tam giác đều cạnh bằng a , tứ giác ' 'ABB A là hình thoi, 
· 0' 60 ,A AC =
3
'
2
a
B C = . Tính thể tích lăng trụ ' ' ' .ABCA B C 
 A. 
33
.
16
a
 B. 
33 3
.
16
a
 C. 
33
.
4
a
 D. 
33 3
.
4
a
----------HẾT--------- 
Họ và tên thí sinh: ...... Họ và tên, chữ ký GT1:......... 
Số báo danh : Họ và tên, chữ ký GT2:......... 

Tài liệu đính kèm:

  • pdfNam_DinhMa_de_132.pdf