ĐỀ CƯƠNG ÔN TẬP HỌC KỲ I MÔN TOÁN LỚP 7 NĂM HỌC 2015-2016 A. Phần Lý thuyết: Học sinh cần nắm vững những kiến thức cơ bản như sau: a. Nội dung Ôn tập chương I, Đại số 7 trang 46 b. Nội dung Ôn tập Chương II, Đại số 7 trang 76 c. Nội dung Ôn tập Chương I, Hình học 7, trang 102 d. Nội dung phần Lý thuyết của các bài từ § 1 đến § 5, Hình học 7 Chương II B. Phần Bài tập: Học sinh cần nắm vững các dạng bài tập cơ bản như sau: 1.Dạng 1: Thực hiện phép tính: Bài 1: Tính: a) b) c) d) Bài 2: Tính: a) b) c)1 Bài 3: Tính: a) b) c) d) e) f) h) i) k) l) 2. Dạng 2: Tìm x 1) x + 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 3. Dạng 3: Toán có lời: a/ PHẦN ĐẠI SỐ: Bài 1: Chu vi của hình chữ nhật là 64cm. Tính độ dài của mỗi cạnh biết rằng chúng tỉ lệ với 3 và 5. Bài 2: Tính diện tích của miếng đất hình chữ chữ nhật biết chu vi của nó là 70,4 m và haii cạnh tỉ lệ với 4 ; 7 Bài 3: Tính số cây trồng cùa lớp 7A và 7B biết tỉ số cây trồng của 2 lớp là 8:9 và số cây trồng của 7B hơn 7A là 20 cây. Bài 4: Theo hợp đồng hai tổ sản xuất chia lãi với nhau theo tỉ lệ là 3 : 5 . Hỏi mỗi tổ chia lãi bao nhiêu, nếu tổng số lãi là 12.800.000 đồng ? Bài 5: Biết ba cạnh của một tam giác tỉ lệ với 2 ; 3 ; 4 và chu vi của nó là 45cm. Tính các cạnh của tam giác đó. Bài 6: Chia số 150 thành ba phần tỉ lệ với 3 ; 4 và 13. Bài 7: Bạn Minh đi xe đạp từ nhà đến trường với vận tốc trung bình 12 km/ h thì hết nửa giờ. Nếu bạn Minh đi với vận tốc 10 km/h thì hết bao nhiêu thời gian? Bài 8: Tìm ba số a, b, c biết : và a – b + c = - 10,2. Bài 9: Tìm hai số x và y biết 7x = 3y và x – y = 16. Bài 10: Tìm các số a, b, c, d biết rằng a : b : c : d = 2 : 3 : 4 : 5 và a + b + c + d = - 42 Bài 11: Cho biết 2 đại lượng x và y tỉ lệ thuận với nhau và khi x = 5 và y = 3 Tìm hệ số tỉ lệ k của y đối với x. Hãy biểu diễn y theo x. Tính giá trị của y khi x = -5; x = 10. Bài 12: Cho hàm số a) Biết a = 2 tính b) Tìm a biết ; vẽ đồ thị hàm số khi a = 2; a = -3. c) Trong các điểm sau điểm nào thuộc đồ thị của hàm số khi a = 2 A( 1; 4) B(-1; -2) C(-2; 4) D( -2; -4) Bài 13. Cho hàm số . Hãy xác định a biết. Tính Bài 14. a) Cho hàm số y = f(x) = -2x + 3. Tính f(-2) ;f(-1) ; f(0) ; f(); f(). b) Cho hàm số y = g(x) = x2 – 1. Tính g(-1); g(0) ; g(1) ; g(2). Bài 15: Xác định các điểm sau trên mặt phẳng tọa độ: A(-1;3) ; B(2;3) ; C(3;) ; D(0; -3); E(3;0). Bài 16: Vẽ đồ thị hàm số sau: a) y = 3x; b) y = -3x c) y = x d) y = x. Bài 17: Những điểm nào sau đây thuộc đồ thị hàm số: y = -3x. A ; B ; C D( ) b. PHẦN HÌNH HỌC: Bài 1: Vẽ đoạn thẳng AB dài 2cm và đoạn thẳng BC dài 3cm rồi vẽ đường trung trực của mỗi đoạn thẳng. Bài 2: Cho hình 1 biết a // b và = 370. a) Tính . (Hình 1) b) So sánh và . c) Tính . Bài 3: Cho hình 2: a) Vì sao a//b? b) Tính số đo góc C (Hình 2) Câu 4: (3 điểm) Cho hình vẽ 3 (xy//mn). Tính số đo góc AOB. (Hình 3) Câu 5: (3 điểm) Cho bài toán như hình 4, biết xx’//yy’. (Hình 4) Tính số đo góc B1. Bài 6: Cho góc xAy. Lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh rằng ABC =ADE. Bài 7: Cho ABC có =. Tia phân giác của góc A cắt BC tại D. Chứng minh rằng: a) ADB = ADC b) AB = AC. Bài 8: Cho góc xOy khác góc bẹt.Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot, kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B. a) Chứng minh rằng OA = OB; b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và =. Bài 9 : Cho tam giác ABC có 3 góc đều nhọn, đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA = HD. a/ Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD. b/ Chứng minh CA = CD và BD = BA. c/ Cho góc ACB = 450.Tính góc ADC. d/ Đường cao AH phải có thêm điều kiện gì thì AB // CD. Bài 10 : Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM. a/ Chứng minh và AI là tia phân giác góc BAC. b/ Chứng minh AM = AN. c) Chứng minh AIBC. Bài 11 : Cho tam giác ABC có góc A bằng 900. Vẽ đường thẳng AH vuông góc với BC (H BC). Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD Chứng minh DAHB = DDBH Hai đường thẳng AB và DH có song song không? Vì sao? Tính góc ACB biết góc BAH = 350 Bài 12: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD. c) Chứng minh: OE là phân giác của góc xOy. Thêi gian lµm bµi: 120 phót C©u1: (2 ®iÓm) Cho d·y tØ sè b»ng nhau: T×m gi¸ trÞ biÓu thøc: M= C©u2: (1 ®iÓm) . Cho S =. Chøng minh r»ng S kh«ng ph¶i lµ sè chÝnh ph¬ng. C©u3: (2 ®iÓm) Mét « t« ch¹y tõ A ®Õn B víi vËn tèc 65 km/h, cïng lóc ®ã mét xe m¸y ch¹y tõ B ®Õn A víi vËn tèc 40 km/h. BiÕt kho¶ng c¸ch AB lµ 540 km vµ M lµ trung ®iÓm cña AB. Hái sau khi khëi hµnh bao l©u th× «t« c¸ch M mét kho¶ng b»ng 1/2 kho¶ng c¸ch tõ xe m¸y ®Õn M. C©u4: (2 ®iÓm) Cho tam gi¸c ABC, O lµ ®iÓm n»m trong tam gi¸c. a. Chøng minh r»ng: b. BiÕt vµ tia BO lµ tia ph©n gi¸c cña gãc B. Chøng minh r»ng: Tia CO lµ tia ph©n gi¸c cña gãc C. C©u 5: (1,5®iÓm). Cho 9 ®êng th¼ng trong ®ã kh«ng cã 2 ®êng th¼ng nµo song song. CMR Ýt nhÊt còng cã 2 ®êng th¼ng mµ gãc nhän gi÷a chóng kh«ng nhá h¬n 200. C©u 6: (1,5®iÓm). Khi ch¬i c¸ ngùa, thay v× gieo 1 con sóc s¾c, ta gieo c¶ hai con sóc s¾c cïng mét lóc th× ®iÓm thÊp nhÊt lµ 2, cao nhÊt lµ 12. c¸c ®iÓm kh¸c lµ 3; 4; 5 ;6 11. H·y lËp b¶ng tÇn sè vÒ kh¶ n¨ng xuÊt hiÖn mçi lo¹i ®iÓm nãi trªn? TÝnh tÇn xuÊt cña mçi lo¹i ®iÓm ®ã. ------------------------------------ HÕt ---------------------------------------------- §Ò sè 2. Thêi gian lµm bµi: 120 phót C©u 1: T×m c¸c sè a,b,c biÕt r»ng: ab =c ;bc= 4a; ac=9b C©u 2: T×m sè nguyªn x tho¶ m·n: a,÷5x-3÷ 4 c, ÷4- x÷ +2x =3 C©u3: T×m gi¸ trÞ nhá nhÊt cña biÓu thøc: A =÷x÷ +÷8 -x÷ C©u 4: e.BiÕt r»ng :12+22+33+...+102= 385. TÝnh tæng : S= 22+ 42+...+202 C©u 5 : Cho tam gi¸c ABC ,trung tuyÕn AM .Gäi I lµ trung ®iÓm cña ®o¹n th¼ng AM, BI c¾t c¹nh AC t¹i D. a. Chøng minh AC=3 AD b. Chøng minh ID =1/4BD ------------------------------------------------- HÕt ------------------------------------------ §Ò sè 3 Thêi gian lµm bµi: 120 phót C©u 1 . ( 2®) Cho: . Chøng minh: . C©u 2. (1®). T×m A biÕt r»ng: A = . C©u 3. (2®). T×m ®Ó AÎ Z vµ t×m gi¸ trÞ ®ã. a). A = . b). A = . C©u 4. (2®). T×m x, biÕt: a) = 5 . b). ( x+ 2) 2 = 81. c). 5 x + 5 x+ 2 = 650 C©u 5. (3®). Cho r ABC vu«ng c©n t¹i A, trung tuyÕn AM . E Î BC, BH^ AE, CK ^ AE, (H,K Î AE). Chøng minh r MHK vu«ng c©n. -------------------------------- HÕt ------------------------------------ §Ò sè 4 Thêi gian lµm bµi : 120 phót. C©u 1 : ( 3 ®iÓm). 1. Ba ®êng cao cña tam gi¸c ABC cã ®é dµi lµ 4,12 ,a . BiÕt r»ng a lµ mét sè tù nhiªn. T×m a ? 2. Chøng minh r»ng tõ tØ lÖ thøc ( a,b,c ,d¹ 0, a¹b, c¹d) ta suy ra ®îc c¸c tØ lÖ thøc: a) . b) . C©u 2: ( 1 ®iÓm). T×m sè nguyªn x sao cho: ( x2 –1)( x2 –4)( x2 –7)(x2 –10) < 0. C©u 3: (2 ®iÓm). T×m gi¸ trÞ nhá nhÊt cña: A = | x-a| + | x-b| + |x-c| + | x-d| víi a<b<c<d. C©u 4: ( 2 ®iÓm). Cho h×nh vÏ. a, BiÕt Ax // Cy. so s¸nh gãc ABC víi gãc A+ gãc C. b, gãc ABC = gãc A + gãc C. Chøng minh Ax // Cy. x A B y C C©u 5: (2 ®iÓm) Tõ ®iÓm O tïy ý trong tam gi¸c ABC, kÎ OM, ON , OP lÇn lît vu«ng gãc víi c¸c c¹nh BC, CA, Ab. Chøng minh r»ng: AN2 + BP2 + CM2 = AP2 + BM2 + CN2 ---------------------------------------------- HÕt ------------------------------------------ §Ò sè 5 Thêi gian lµm bµi: 120 phót C©u 1(2®): a) TÝnh: A = 1 + b) T×m n Z sao cho : 2n - 3 n + 1 C©u 2 (2®): a) T×m x biÕt: 3x - = 2 b) T×m x, y, z biÕt: 3(x-1) = 2(y-2), 4(y-2) = 3(z-3) vµ 2x+3y-z = 50. C©u 3(2®): Ba ph©n sè cã tæng b»ng , c¸c tö cña chóng tØ lÖ víi 3; 4; 5, c¸c mÉu cña chóng tØ lÖ víi 5; 1; 2. T×m ba ph©n sè ®ã. C©u 4(3®): Cho tam gi¸c ABC c©n ®Ønh A. Trªn c¹nh AB lÊy ®iÓm D, trªn tia ®èi cña tia CA lÊy ®iÓm E sao cho BD = CE. Gäi I lµ trung ®iÓm cña DE. Chøng minh ba ®iÓm B, I, C th¼ng hµng. C©u 5(1®): T×m x, y thuéc Z biÕt: 2x + = ---------------------------------------------------HÕt---------------------------------------------- §Ò sè 6 Thêi gian lµm bµi: 120’. C©u 1: TÝnh : a) A = . b) F = 1+ C©u 2: a) So s¸nh: vµ . b) Chøng minh r»ng: . C©u 3: T×m sè cã 3 ch÷ sè biÕt r»ng sè ®ã lµ béi cña 18 vµ c¸c ch÷ sè cña nã tØ lÖ theo 1:2:3 C©u 4 Cho tam gi¸c ABC cã gãc B vµ gãc C nhá h¬n 900 . VÏ ra phÝa ngoµi tam gi¸c Êy c¸c tam gi¸c vu«ng c©n ABD vµ ACE ( trong ®ã gãc ABD vµ gãc ACE ®Òu b»ng 900 ), vÏ DI vµ EK cïng vu«ng gãc víi ®êng th¼ng BC. Chøng minh r»ng: a. BI=CK; EK = HC; b. BC = DI + EK. C©u 5: T×m gi¸ trÞ nhá nhÊt cña biÓu thøc : A = ------------------------------------------ hÕt --------------------------------------------- §Ò sè 7 Thêi gian lµm bµi: 120 phót C©u 1: (1,5 ®)T×m x biÕt: a, ++++=0 b, C©u2:(3 ®iÓm) a, TÝnh tæng: b, CMR: c, Chøng minh r»ng mäi sè nguyªn d¬ng n th×: 3n+2 – 2n+2 +3n – 2n chia hÕt cho 10 C©u3: (2 ®iÓm) §é dµi ba c¹nh cña mét tam gi¸c tØ lÖ víi 2;3;4. Hái ba chiÒu cao t¬ng øng ba c¹nh ®ã tØ lÖ víi sè nµo? C©u 4: (2,5®iÓm) Cho tam gi¸c ABC cã gãchai ®êng ph©n gi¸c AP vµ CQ cña tam gi¸c c¾t nhau t¹i I. a, TÝnh gãc AIC b, CM : IP = IQ C©u5: (1 ®iÓm) Cho . T×m sè nguyªn n ®Ó B cã gi¸ trÞ lín nhÊt. ------------------------------------------ hÕt ----------------------------------------- §Ò sè 8 Thêi gian : 120’ C©u 1 : (3®) T×m sè h÷u tØ x, biÕt : a) = - 243 . b) c) x - 2 = 0 (x) C©u 2 : (3®) a, T×m sè nguyªn x vµ y biÕt : b, T×m sè nguyªn x ®Ó A cã gi¸ trÞ lµ 1 sè nguyªn biÕt : A = (x) C©u 3 : (1®) T×m x biÕt : 2. - 2x = 14 C©u 4 : (3®) a, Cho ABC cã c¸c gãc A, B , C tØ lÖ víi 7; 5; 3 . C¸c gãc ngoµi t¬ng øng tØ lÖ víi c¸c sè nµo . b, Cho ABC c©n t¹i A vµ ¢ < 900 . KÎ BD vu«ng gãc víi AC . Trªn c¹nh AB lÊy ®iÓm E sao cho : AE = AD . Chøng minh : 1) DE // BC 2) CE vu«ng gãc víi AB . -----------------------------------HÕt-------------------------------- §Ò sè 9 Thêi gian lµm bµi: 120 phót Bµi1( 3 ®iÓm) a, TÝnh: A = b, TÝnh nhanh:f. (18.123 + 9.436.2 + 3.5310.6) : (1 + 4 +7 ++ 100 – 410) Bµi 2: ( 2®iÓm). T×m 3 sè nguyªn d¬ng sao cho tæng c¸c nghÞch ®¶o cña chóng b»ng 2. Bµi 3: (2 ®iÓm). CÇn bao nhiªu ch÷ sè ®Ó ®¸nh sè trang mét cuèn s¸ch dµy 234 trang. Bµi 4: ( 3 ®iÓm) Cho ABC vu«ng t¹i B, ®êng cao BE T×m sè ®o c¸c gãc nhän cña tam gi¸c , biÕt EC – EA = AB. -------------------------------------------- hÕt ------------------------------------------- §Ò sè 10 Thêi gian lµm bµi 120 phót Bµi 1(2 ®iÓm). Cho a.ViÕt biÓu thøc A díi d¹ng kh«ng cã dÊu gi¸ trÞ tuyÖt ®èi. b.T×m gi¸ trÞ nhá nhÊt cña A. Bµi 2 ( 2 ®iÓm) a.Chøng minh r»ng : . b.T×m sè nguyªn a ®Ó : lµ sè nguyªn. Bµi 3(2,5 ®iÓm). T×m n lµ sè tù nhiªn ®Ó : Bµi 4(2 ®iÓm) Cho gãc xOy cè ®Þnh. Trªn tia Ox lÊy M, Oy lÊy N sao cho OM + ON = m kh«ng ®æi. Chøng minh : §êng trung trùc cña MN ®i qua mét ®iÓm cè ®Þnh. Bµi 5(1,5 ®iÓm). T×m ®a thøc bËc hai sao cho : . ¸p dông tÝnh tæng : S = 1 + 2 + 3 + + n. ------------------------------------ HÕt -------------------------------- §Ò sè 11 Thêi gian lµm bµi: 120 phót C©u 1: (2®) Rót gän A= C©u 2 (2®) Ba líp 7A,7B,7C cã 94 häc sinh tham gia trång c©y. Mçi häc sinh líp 7A trång ®îc 3 c©y, Mçi häc sinh líp 7B trång ®îc 4 c©y, Mçi häc sinh líp 7C trång ®îc 5 c©y,. Hái mçi líp cã bao nhiªu häc sinh. BiÕt r»ng sè c©y mçi líp trång ®îc ®Òu nh nhau. C©u 3: (1,5®) Chøng minh r»ng lµ mét sè tù nhiªn. C©u 4 : (3®) Cho gãc xAy = 600 vÏ tia ph©n gi¸c Az cña gãc ®ã . Tõ mét ®iÓm B trªn Ax vÏ ®êng th¼ng song song víi víi Ay c¾t Az t¹i C. vÏ Bh ^ Ay,CM ^Ay, BK ^ AC. Chøng minh r»ng: a, K lµ trung ®iÓm cña AC. b, BH = c, ®Òu C©u 5 (1,5 ®) Trong mét kú thi häc sinh giái cÊp HuyÖn, bèn b¹n Nam, B¾c, T©y, §«ng ®o¹t 4 gi¶i 1,2,3,4 . BiÕt r»ng mçi c©u trong 3 c©u díi ®©y ®óng mét nöa vµ sai 1 nöa: a, T©y ®¹t gi¶i 1, B¾c ®¹t gi¶i 2. b, T©y ®¹t gi¶i 2, §«ng ®¹t gi¶i 3. c, Nam ®¹t gi¶i 2, §«ng ®¹t gi¶i 4. Em h·y x¸c ®Þnh thø tù ®óng cña gi¶i cho c¸c b¹n. --------------------------------- HÕt -------------------------------------- §Ò sè 12 Thêi gian lµm bµi 120 phót C©u 1: (2®) T×m x, biÕt: a) b) c) d) C©u 2: (2®) a) TÝnh tæng S = 1+52+ 54+...+ 5200 b) So s¸nh 230 + 330 + 430 vµ 3.2410 C©u 3: (2®) Cho tam gi¸c ABC cã gãc B b»ng 600. Hai tia ph©n gi¸c AM vµ CN cña tam gi¸c ABC c¾t nhau t¹i I. a) TÝnh gãc AIC b) Chøng minh IM = IN C©u 4: (3®) Cho M,N lÇn lît lµ trung ®iÓm cña c¸c c¹nh AB vµ Ac cña tam gi¸c ABC. C¸c ®êng ph©n gi¸c vµ ph©n gi¸c ngoµi cña tam gi¸c kÎ tõ B c¾t ®êng th¼ng MN lÇn lît t¹i D vµ E c¸c tia AD vµ AE c¾t ®êng th¼ng BC theo thø tù t¹i P vµ Q. Chøng minh: a) BD b) B lµ trung ®iÓm cña PQ c) AB = DE C©u 5: (1®) Víi gi¸ trÞ nguyªn nµo cña x th× biÓu thøc A= Cã gi¸ trÞ lín nhÊt? T×m gi¸ trÞ ®ã. -------------------------------------- HÕt ---------------------------------------- §Ò sè 13 Thêi gian : 120’ C©u 1: ( 1,5 ®iÓm) T×m x, biÕt: a. - x = 15. b. - x > 1. c. 5. C©u2: ( 2 ®iÓm) a. TÝnh tæng: A= (- 7) + (-7)2 + + (- 7)2006 + (- 7)2007. Chøng minh r»ng: A chia hÕt cho 43. b. Chøng minh r»ng ®iÒu kiÖn cÇn vµ ®ñ®Ó m2 + m.n + n2 chia hÕt cho 9 lµ: m, n chia hÕt cho 3. C©u 3: ( 23,5 ®iÓm) §é dµi c¸c c¹nh cña mét tam gi¸c tØ lÖ víi nhau nh thÕ nµo,biÕt nÕu céng lÇn lît ®é dµi tõng hai ®êng cao cña tam gi¸c ®ã th× c¸c tæng nµy tû lÖ theo 3:4:5. C©u 4: ( 3 ®iÓm ) Cho tam gi¸c ABC c©n t¹i A. D lµ mét ®iÓm n»m trong tam gi¸c, biÕt > . Chøng minh r»ng: DB < DC. C©u 5: ( 1 ®iÓm ) T×m GTLN cña biÓu thøc: A = - . -------------------------------------- HÕt --------------------------------- §Ò sè 14 Thêi gian : 120’ C©u 1 (2 ®iÓm): T×m x, biÕt : a. +5x = 4x-10 b. 3+ > 13 C©u 2: (3 ®iÓm ) a. T×m mét sè cã 3 ch÷ sè biÕt r»ng sè ®ã chia hÕt cho 18 vµ c¸c ch÷ sè cña nã tû lÖ víi 1, 2, 3. b. Chøng minh r»ng: Tæng A=7 +72+73+74+...+74n chia hÕt cho 400 (nN). C©u 3 : (1®iÓm )cho h×nh vÏ , biÕt ++ = 1800 chøng minh Ax// By. A x C B y C©u 4 (3 ®iÓm ) Cho tam gi¸c c©n ABC, cã =1000. KÎ ph©n gi¸c trong cña gãc CAB c¾t AB t¹i D. Chøng minh r»ng: AD + DC =AB C©u 5 (1 ®iÓm ) TÝnh tæng. S = (-3)0 + (-3)1+ (-3)2 + .....+ (-3)2004. ------------------------------------ HÕt ---------------------------------- §Ò sè 15 Thêi gian lµm bµi: 120 phó Bµi 1: (2,5®) Thùc hiÖn phÐp tÝnh sau mét c¸ch hîp lÝ: Bµi 2: (2,5®) TÝnh gi¸ trÞ nhá nhÊt cña biÓu thøc: A = Bµi 3: (4®) Cho tam gi¸c ABC. Gäi H, G,O lÇn lît lµ trùc t©m , träng t©m vµ giao ®iÓm cña 3 ®êng trung trùc trong tam gi¸c. Chøng minh r»ng: a. AH b»ng 2 lÇn kho¶ng c¸ch tõ O ®Õn BC b. Ba ®iÓm H,G,O th¼ng hµng vµ GH = 2 GO Bµi 4: (1 ®) T×m tæng c¸c hÖ sè cña ®a thøc nhËn ®îc sau khi bá dÊu ngoÆc trong biÓu thøc (3-4x+x2)2006.(3+ 4x + x2)2007. ------------------------------------------- HÕt ------------------------------------------ §Ò 16 Thêi gian lµm bµi: 120 phót C©u 1(3®): Chøng minh r»ng A = 22011969 + 11969220 + 69220119 chia hÕt cho 102 C©u 2(3®): T×m x, biÕt: a. ; b. C©u 3(3®): Cho tam gi¸c ABC. Gäi M, N, P theo thø tù lµ trung ®iÓm cña BC, CA, AB. C¸c ®êng trung trùc cña tam gi¸c gÆp nhau tai 0. C¸c ®êng cao AD, BE, CF gÆp nhau t¹i H. Gäi I, K, R theo thø tù lµ trung ®iÓm cña HA, HB, HC. a) C/m H0 vµ IM c¾t nhau t¹i Q lµ trung ®iÓm cña mçi ®o¹n. b) C/m QI = QM = QD = 0A/2 c) H·y suy ra c¸c kÕt qu¶ t¬ng tù nh kÕt qu¶ ë c©u b. C©u 4(1®): T×m gi¸ trÞ cña x ®Ó biÓu thøc A = 10 - 3|x-5| ®¹t gi¸ trÞ lín nhÊt. --------------------------------------------- HÕt --------------------------------------------- §Ò 17 Thêi gian: 120 phót Bµi 1: (2®) Cho biÓu thøc A = a) TÝnh gi¸ trÞ cña A t¹i x = b) T×m gi¸ trÞ cña x ®Ó A = - 1 c) T×m gi¸ trÞ nguyªn cña x ®Ó A nhËn gi¸ trÞ nguyªn. Bµi 2. (3®) a) T×m x biÕt: b) TÝnh tæng M = 1 + (- 2) + (- 2)2 + +(- 2)2006 c) Cho ®a thøc: f(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – x4 + 1 – 4x3. Chøng tá r»ng ®a thøc trªn kh«ng cã nghiÖm Bµi 3.(1®) Hái tam gi¸c ABC lµ tam gi¸c g× biÕt r»ng c¸c gãc cña tam gi¸c tØ lÖ víi 1, 2, 3. Bµi 4.(3®) Cho tam gi¸c ABC cã gãc B b»ng 600. Hai tia ph©n gi¸c AM vµ CN cña tam gi¸c ABC c¾t nhau t¹i I. a) TÝnh gãc AIC b) Chøng minh IM = IN Bµi 5. (1®) Cho biÓu thøc A = . T×m gi¸ trÞ nguyªn cña x ®Ó A ®¹t gi¸ trÞ lín nhÊt. T×m gi¸ trÞ lín nhÊt ®ã. ---------------------------------------- HÕt -------------------------------------- §Ò 18 Thêi gian: 120 phót C©u 1: 1.TÝnh: a. b. 2. Rót gän: E = 3. BiÓu diÔn sè thËp ph©n díi d¹ng ph©n sè vµ ngîc l¹i: a. b. c. 0, (21) d. 0,5(16) C©u 2: Trong mét ®ît lao ®éng, ba khèi 7, 8, 9 chuyªn chë ®îc 912 m3 ®Êt. Trung b×nh mçi häc sinh khèi 7, 8, 9 theo thø tù lµm ®îc 1,2 ; 1,4 ; 1,6 m3 ®Êt. Sè häc sinh khèi 7, 8 tØ lÖ víi 1 vµ 3. Khèi 8 vµ 9 tØ lÖ víi 4 vµ 5. TÝnh sè häc sinh mçi khèi. C©u 3: a.T×m gi¸ trÞ lín nhÊt cña biÓu thøc: A = b.T×m gi¸ trÞ nhá nhÊt cña biÓu thøc: B = (x+1)2 + (y + 3)2 + 1 C©u 4: Cho tam gi¸c ABC c©n (CA = CB) vµ ÐC = 800. Trong tam gi¸c sao cho vµ .TÝnh . C©u 5: Chøng minh r»ng : nÕu (a,b) = 1 th× (a2,a+b) = 1. ------------------------------------- HÕt -------------------------------------- §Ò19 Thêi gian: 120 phót. C©u I: (2®) 1) Cho vµ 5a - 3b - 4 c = 46 . X¸c ®Þnh a, b, c 2) Cho tØ lÖ thøc : . Chøng minh : . Víi ®iÒu kiÖn mÉu thøc x¸c ®Þnh. C©u II : TÝnh : (2®) 1) A = 2) H = C©u III : (1,5 ®) §æi thµnh ph©n sè c¸c sè thËp ph©n sau : a. 0,2(3) ; b. 1,12(32). C©u IV : (1.5®) X¸c ®Þnh c¸c ®a thøc bËc 3 biÕt : P(0) = 10; P(1) = 12; P(2) = 4 ; p(3) = 1 C©u V : (3®) Cho tam gi¸c ABC cã 3 gãc nhän. Dùng ra phÝa ngoµi 2 tam gi¸c vu«ng c©n ®Ønh A lµ ABD vµ ACE . Gäi M;N;P lÇn lît lµ trung ®iÓm cña BC; BD;CE . a. Chøng minh : BE = CD vµ BE ^ víi CD b. Chøng minh tam gi¸c MNP vu«ng c©n ---------------------------------------------- HÕt ------------------------------------------------- §Ò 20 Thêi gian lµm bµi: 120 phót Bµi 1 (1,5®): Thùc hiÖn phÐp tÝnh: a) D = b) B = 1 + 22 + 24 + ... + 2100 Bµi 2 (1,5®): a) So s¸nh: 230 + 330 + 430 vµ 3.2410 b) So s¸nh: 4 + vµ + Bµi 3 (2®): Ba m¸y xay xay ®îc 359 tÊn thãc. Sè ngµy lµm viÖc cña c¸c m¸y tØ lÖ víi 3:4:5, sè giê lµm viÖc cña c¸c m¸y tØ lÖ víi 6, 7, 8, c«ng suÊt c¸c m¸y tØ lÖ nghÞc víi 5,4,3. Hái mçi m¸y xay ®îc bao nhiªu tÊn thãc. Bµi 4 (1®): T×m x, y biÕt: a) £ 3 b) Bµi 5 ( 3®): Cho ABC cã c¸c gãc nhá h¬n 1200. VÏ ë phÝa ngoµi tam gi¸c ABC c¸c tam gi¸c ®Òu ABD, ACE. Gäi M lµ giao ®iÓm cña DC vµ BE. Chøng minh r»ng: a) b) Bµi 6 (1®): Cho hµm sè f(x) x¸c ®Þnh víi mäi x thuéc R. BiÕt r»ng víi mäi x ta ®Òu cã: . TÝnh f(2). ---------------------------------------- HÕt ------------------------------------------ §Ò 21 Thêi gian lµm bµi: 120 phót C©u 1 (2®) T×m x, y, z Z, biÕt a. = 3 - x b. c. 2x = 3y; 5x = 7z vµ 3x - 7y + 5z = 30 C©u 2 (2®) a. Cho C =. H·y so s¸nh A víi b. Cho B = . T×m x Z ®Ó B cã gi¸ trÞ lµ mét sè nguyªn d¬ng C©u 3 (2®) Mét ngêi ®i tõ A ®Õn B víi vËn tèc 4km/h vµ dù ®Þnh ®Õn B lóc 11 giê 45 phót. Sau khi ®i ®îc qu·ng ®êng th× ngêi ®ã ®i víi vËn tèc 3km/h nªn ®Õn B lóc 12 giê tra. TÝnh qu·ng ®êngAB vµ ngêi ®ã khëi hµnh lóc mÊy giê? C©u 4 (3®) Cho cã > 900. Gäi I lµ trung ®iÓm cña c¹nh AC. Trªn tia ®èi cña tia IB lÊy ®iÓm D sao cho IB = ID. Nèi c víi D. a. Chøng minh b. Gäi M lµ trung ®iÓm cña BC; N lµ trung ®iÓm cña CD. Chøng minh r»ng I lµ trung ®iÓm cña MN c. Chøng minh AIB d. T×m ®iÒu kiÖn cña ®Ó C©u 5 (1®) T×m gi¸ trÞ nhá nhÊt cña biÓu thøc: P = . Khi ®ã x nhËn gi¸ trÞ nguyªn nµo? ----------------------------- HÕt -------------------------
Tài liệu đính kèm: