Bộ đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2012-2013 (Có đáp án)

doc 204 trang Người đăng duyenlinhkn2 Ngày đăng 25/05/2024 Lượt xem 213Lượt tải 1 Download
Bạn đang xem 20 trang mẫu của tài liệu "Bộ đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2012-2013 (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bộ đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2012-2013 (Có đáp án)
	SỞ GIÁO DỤC VÀ ĐÀO TẠO	KỲ THI TUYỂN SINH LỚP 10 THPT 	
 	 HÀ NỘI	Năm học: 2012 – 2013
ĐỀ CHÍNH THỨC
	Môn thi: Toán
	 	 Ngày thi: 21 tháng 6 năm 2012
	 	Thời gian làm bài: 120 phút 
Bài I (2,5 điểm)
	1) Cho biểu thức . Tính giá trị của A khi x = 36
	2) Rút gọn biểu thức (với )
	3) Với các của biểu thức A và B nói trên, hãy tìm các giá trị của x nguyên để giá trị của biểu thức B(A – 1) là số nguyên
Bài II (2,0 điểm). Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
	Hai người cùng làm chung một công việc trong giờ thì xong. Nếu mỗi người làm một mình thì người thứ nhất hoàn thành công việc trong ít hơn người thứ hai là 2 giờ. Hỏi nếu làm một mình thì mỗi người phải làm trong bao nhiêu thời gian để xong công việc?
Bài III (1,5 điểm)
	1) Giải hệ phương trình: 
	2) Cho phương trình: x2 – (4m – 1)x + 3m2 – 2m = 0 (ẩn x). Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện : 
Bài IV (3,5 điểm)
	Cho đường tròn (O; R) có đường kính AB. Bán kính CO vuông góc với AB, M là một điểm bất kỳ trên cung nhỏ AC (M khác A, C); BM cắt AC tại H. Gọi K là hình chiếu của H trên AB.
	1) Chứng minh CBKH là tứ giác nội tiếp.
	2) Chứng minh 
	3) Trên đọan thẳng BM lấy điểm E sao cho BE = AM. Chứng minh tam giác ECM là tam giác vuông cân tại C
	4) Gọi d là tiếp tuyến của (O) tại điểm A; cho P là điểm nằm trên d sao cho hai điểm P, C nằm trong cùng một nửa mặt phẳng bờ AB và . Chứng minh đường thẳng PB đi qua trung điểm của đoạn thẳng HK
Bài V (0,5 điểm). Với x, y là các số dương thỏa mãn điều kiện , tìm giá trị nhỏ nhất của biểu thức: 
GỢI Ý – ĐÁP ÁN
Bài I: (2,5 điểm) 
1) Với x = 36, ta có : A = 
2) Với x , x ¹ 16 ta có :
B = = 
3) Ta có: .
Để nguyên, x nguyên thì là ước của 2, mà Ư(2) =
Ta có bảng giá trị tương ứng:
1
2
x
17
15
18
14
Kết hợp ĐK , để nguyên thì 
Bài II: (2,0 điểm)
Gọi thời gian người thứ nhất hoàn thành một mình xong công việc là x (giờ), ĐK 
Thì thời gian người thứ hai làm một mình xong công việc là x + 2 (giờ)
Mỗi giờ người thứ nhất làm được(cv), người thứ hai làm được(cv)
Vì cả hai người cùng làm xong công việc trong giờ nên mỗi giờ cả hai đội làm được=(cv)
Do đó ta có phương trình
Û 5x2 – 14x – 24 = 0
D’ = 49 + 120 = 169, 
=> (loại) và (TMĐK)
Vậy người thứ nhất làm xong công việc trong 4 giờ, 
người thứ hai làm xong công việc trong 4+2 = 6 giờ.
Bài III: (1,5 điểm) 1)Giải hệ: , (ĐK: ).
Hệ .(TMĐK)
Vậy hệ có nghiệm (x;y)=(2;1).
2)	+ Phương trình đã cho có D = (4m – 1)2 – 12m2 + 8m = 4m2 + 1 > 0, "m
	Vậy phương trình có 2 nghiệm phân biệt "m
 + Theo ĐL Vi –ét, ta có: . 
Khi đó: 
	Û (4m – 1)2 – 2(3m2 – 2m) = 7 Û 10m2 – 4m – 6 = 0 Û 5m2 – 2m – 3 = 0
	Ta thấy tổng các hệ số: a + b + c = 0 => m = 1 hay m = . 
	Trả lời: Vậy....
A 
B 
C 
M 
H 
K 
O 
E 
Bài IV: (3,5 điểm) 
Ta có ( do chắn nửa đường tròn đk AB)
(do K là hình chiếu của H trên AB)
=> nên tứ giác CBKH nội tiếp trong đường tròn đường kính HB.
Ta có (do cùng chắn của (O)) 
và (vì cùng chắn .của đtròn đk HB) 
Vậy 
Vì OC ^ AB nên C là điểm chính giữa của cung AB Þ AC = BC và 
 Xét 2 tam giác MAC và EBC có 
MA= EB(gt), AC = CB(cmt) và = vì cùng chắn cung của (O)
 ÞMAC và EBC (cgc) Þ CM = CE Þ tam giác MCE cân tại C (1)
Ta lại có (vì chắn cung ) 
. Þ(tính chất tam giác MCE cân tại C)
Mà (Tính chất tổng ba góc trong tam giác)Þ (2)
Từ (1), (2) Þtam giác MCE là tam giác vuông cân tại C (đpcm).
A 
B 
C 
M 
H 
K 
O 
S 
P 
E 
N
4) Gọi S là giao điểm của BM và đường thẳng (d), N là giao điểm của BP với HK.
Xét DPAM và D OBM :
Theo giả thiết ta có (vì có R = OB). 
Mặt khác ta có (vì cùng chắn cung của (O))
Þ DPAM ∽ D OBM 
 .(do OB = OM = R) (3)
Vì (do chắn nửa đtròn(O))
Þ tam giác AMS vuông tại M. Þ 
 và (4)
 Mà PM = PA(cmt) nên 
Từ (3) và (4) Þ PA = PS hay P là trung điểm của AS.
Vì HK//AS (cùng vuông góc AB) nên theo ĐL Ta-lét, ta có: hay 
mà PA = PS(cmt) hay BP đi qua trung điểm N của HK. (đpcm)
Bài V: (0,5 điểm)
Cách 1(không sử dụng BĐT Cô Si)
 Ta có M = = 
Vì (x – 2y)2 ≥ 0, dấu “=” xảy ra Û x = 2y
 x ≥ 2y Þ , dấu “=” xảy ra Û x = 2y
Từ đó ta có M ≥ 0 + 4 -=, dấu “=” xảy ra Û x = 2y
Vậy GTNN của M là , đạt được khi x = 2y
Cách 2:
Ta có M = 
Vì x, y > 0 , áp dụng bdt Cô si cho 2 số dương ta có , 
dấu “=” xảy ra Û x = 2y
 Vì x ≥ 2y Þ, dấu “=” xảy ra Û x = 2y
Từ đó ta có M ≥ 1 +=, dấu “=” xảy ra Û x = 2y
Vậy GTNN của M là , đạt được khi x = 2y
Cách 3:
Ta có M = 
Vì x, y > 0 , áp dụng bdt Cô si cho 2 số dương ta có , 
dấu “=” xảy ra Û x = 2y
 Vì x ≥ 2y Þ, dấu “=” xảy ra Û x = 2y
Từ đó ta có M ≥ 4-=, dấu “=” xảy ra Û x = 2y
Vậy GTNN của M là , đạt được khi x = 2y
Cách 4:
Ta có M = 
Vì x, y > 0 , áp dụng bdt Co si cho 2 số dương ta có , 
dấu “=” xảy ra Û x = 2y
 Vì x ≥ 2y Þ, dấu “=” xảy ra Û x = 2y
Từ đó ta có M ≥ += 1+=, dấu “=” xảy ra Û x = 2y
Vậy GTNN của M là , đạt được khi x = 2y
ĐỀ CHÍNH THỨC
SỞ GIÁO DỤC VÀ ĐÀO TẠO	KỲ THI TUYỂN SINH LỚP 10 THPT 	TP.HCM	Năm học: 2012 – 2013
	MÔN: TOÁN
	Thời gian làm bài: 120 phút 
Bài 1: (2 điểm)
Giải các phương trình và hệ phương trình sau:
a) 	
b) 	
c) 
d) 
Bài 2: (1,5 điểm)
	a) Vẽ đồ thị (P) của hàm số và đường thẳng (D): trên cùng một hệ trục toạ độ.
	b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3: (1,5 điểm)
	Thu gọn các biểu thức sau:
 với x > 0; 
Bài 4: (1,5 điểm)
	Cho phương trình (x là ẩn số)
Chứng minh rằng phương trình luôn luôn có 2 nghiệm phân biệt với mọi m.
Gọi x1, x2 là các nghiệm của phương trình. 
Tìm m để biểu thức M = đạt giá trị nhỏ nhất
Bài 5: (3,5 điểm)
Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME<MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO).
Chứng minh rằng MA.MB = ME.MF
Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.
Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh rằng đường thẳng MS vuông góc với đường thẳng KC.
Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng.
BÀI GIẢI
Bài 1: (2 điểm)
Giải các phương trình và hệ phương trình sau:
a) 	 (a)
	 Vì phương trình (a) có a - b + c = 0 nên 
(a) 
b) 	 Û 
Û
Û 
c) 	 (C)
	Đặt u = x2 ³ 0, phương trình thành : u2 + u – 12 = 0 (*)
	(*) có D = 49 nên (*) Û hay (loại)
	Do đó, (C) Û x2 = 3 Û x = ±
Cách khác : (C) Û (x2 – 3)(x2 + 4) = 0 Û x2 = 3 Û x = ±
d) 	 (d)
D’ = 2 + 7 = 9 do đó (d) Û x = 
Bài 2: 
	a) Đồ thị: 
	Lưu ý: (P) đi qua O(0;0), 
(D) đi qua 
	b) PT hoành độ giao điểm của (P) và (D) là	
Û x2 + 2x – 8 = 0 
y(-4) = 4, y(2) = 1
Vậy toạ độ giao điểm của (P) và (D) là .
Bài 3:Thu gọn các biểu thức sau:
 với x > 0; 
Câu 4:
a/ Phương trình (1) có ∆’ = m2 - 4m +8 = (m - 2)2 +4 > 0 với mọi m nên phương trình (1) có 2 nghiệm phân biệt với mọi m.
b/ Do đó, theo Viet, với mọi m, ta có: S = ; P = 
 M = = 
. Khi m = 1 ta có nhỏ nhất
M 
E 
F 
K 
S 
A 
B 
T 
P 
Q 
C 
H 
O 
V 
 lớn nhất khi m = 1 nhỏ nhất khi m = 1
Vậy M đạt giá trị nhỏ nhất là - 2 khi m = 1
Câu 5
Vì ta có do hai tam giác đồng dạng MAE và MBF
Nên MA.MB = ME.MF
 (Phương tích của M đối với đường tròn tâm O)
Do hệ thức lượng trong đường tròn ta có
 MA.MB = MC2, mặt khác hệ thức lượng 
trong tam giác vuông MCO ta có 
MH.MO = MC2 MA.MB = MH.MO 
nên tứ giác AHOB nội tiếp trong đường tròn.
Xét tứ giác MKSC nội tiếp trong đường 
tròn đường kính MS (có hai góc K và C vuông).
Vậy ta có : MK2 = ME.MF = MC2 nên MK = MC.
 Do đó MF chính là đường trung trực của KC
 nên MS vuông góc với KC tại V.
Do hệ thức lượng trong đường tròn ta có MA.MB = MV.MS của đường tròn tâm Q.
Tương tự với đường tròn tâm P ta cũng có MV.MS = ME.MF nên PQ vuông góc với MS và là đường trung trực của VS (đường nối hai tâm của hai đường tròn). Nên PQ cũng đi qua trung điểm của KS (do định lí trung bình của tam giác SKV). Vậy 3 điểm T, Q, P thẳng hàng.
SỞ GIÁO DỤC VÀ ĐÀO TẠO	KỲ THI TUYỂN SINH LỚP 10 THPT 	TP.ĐÀ NẴNG 	Năm học: 2012 – 2013
ĐỀ CHÍNH THỨC
	MÔN: TOÁN
	Thời gian làm bài: 120 phút 
Bài 1: (2,0 điểm)
Giải phương trình:	(x + 1)(x + 2) = 0
Giải hệ phương trình: 
Bài 2: (1,0 điểm)
y
	Rút gọn biểu thức 
y=ax2
Bài 3: (1,5 điểm)
	Biết rằng đường cong trong hình vẽ bên là một parabol y = ax2.
Tìm hệ số a.
2
Gọi M và N là các giao điểm của đường thẳng
y = x + 4 với parabol. Tìm tọa độ của các điểm M và N.
x
2
1
0
Bài 4: (2,0 điểm)
	Cho phương trình x2 – 2x – 3m2 = 0, với m là tham số.
Giải phương trình khi m = 1.
Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa điều kiện .
Bài 5: (3,5 điểm)
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC,B Î (O),CÎ(O’). Đường thẳng BO cắt (O) tại điểm thứ hai là D.
Chứ`ng minh rằng tứ giác CO’OB là một hình thang vuông.
Chứng minh rằng ba điểm A, C, D thẳng hàng.
Từ D kẻ tiếp tuyến DE với đường tròn (O’) (E là tiếp điểm). Chứng minh rằng DB = DE.
BÀI GIẢI
Bài 1:
1) 	(x + 1)(x + 2) = 0 Û x + 1 = 0 hay x + 2 = 0 Û x = -1 hay x = -2
2) 	 Û Û 
Bài 2: = = 
 = = 4
Bài 3: 
1) 	Theo đồ thị ta có y(2) = 2 Þ 2 = a.22 Û a = ½ 
2)	Phương trình hoành độ giao điểm của y = và đường thẳng y = x + 4 là :
	x + 4 = Û x2 – 2x – 8 = 0 Û x = -2 hay x = 4
	y(-2) = 2 ; y(4) = 8. Vậy tọa độ các điểm M và N là (-2 ; 2) và (4 ; 8).
Bài 4:	
1)	Khi m = 1, phương trình thành : x2 – 2x – 3 = 0 Û x = -1 hay x = 3 (có dạng a–b + c = 0)
2)	Với x1, x2 ¹ 0, ta có : Û Û 3(x1 + x2)(x1 – x2) = 8x1x2
	Ta có : a.c = -3m2 £ 0 nên D ³ 0, "m
	Khi D ³ 0 ta có : x1 + x2 = và x1.x2 = £ 0
	Điều kiện để phương trình có 2 nghiệm ¹ 0 mà m ¹ 0 Þ D > 0 và x1.x2 < 0 Þ x1 < x2
	Với a = 1 Þ x1 = và x2 = Þ x1 – x2 = 
	Do đó, ycbt Û và m ¹ 0 
Û (hiển nhiên m = 0 không là nghiệm)
Û 4m4 – 3m2 – 1 = 0 Û m2 = 1 hay m2 = -1/4 (loại) Û m = ±1
B
C
E
D
A
O
O’
Bài 5:
1)	Theo tính chất của tiếp tuyến ta có OB, O’C vuông góc với BC Þ tứ giác CO’OB là hình thang vuông.
2)	Ta có góc ABC = góc BDC Þ góc ABC + góc BCA = 900 Þ góc BAC = 900
	Mặt khác, ta có góc BAD = 900 (nội tiếp nửa đường tròn)
	Vậy ta có góc DAC = 1800 nên 3 điểm D, A, C thẳng hàng.
3)	Theo hệ thức lượng trong tam giác vuông DBC ta có DB2 = DA.DC
	Mặt khác, theo hệ thức lượng trong đường tròn (chứng minh bằng tam giác đồng dạng) ta có DE2 = DA.DC Þ DB = DE.
SỞ GD&ĐT
VĨNH PHÚC
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013
ĐỀ THI MÔN : TOÁN
Thời gian làm bài 120 phút (không kể thời gian giao đề)
Ngày thi: 21 tháng 6 năm 2012
Câu 1 (2,0 điểm). Cho biểu thức :P=
Tìm điều kiện xác định của biểu thức P.
Rút gọn P
Câu 2 (2,0 điểm). Cho hệ phương trình :
Giải hệ phương trình với a=1
Tìm a để hệ phương trình có nghiệm duy nhất.
Câu 3 (2,0 điểm). Một hình chữ nhật có chiều rộng bằng một nửa chiều dài. Biết rằng nếu giảm mỗi chiều đi 2m thì diện tích hình chữ nhật đã cho giảm đi một nửa. Tính chiều dài hình chữ nhật đã cho.
Câu 4 (3,0 điểm). Cho đường tròn (O;R) (điểm O cố định, giá trị R không đổi) và điểm M nằm bên ngoài (O). Kẻ hai tiếp tuyến MB, MC (B,C là các tiếp điểm ) của (O) và tia Mx nằm giữa hai tia MO và MC. Qua B kẻ đường thẳng song song với Mx, đường thẳng này cắt (O) tại điểm thứ hai là A. Vẽ đường kính BB’ của (O). Qua O kẻ đường thẳng vuông góc với BB’,đường thẳng này cắt MC và B’C lần lượt tại K và E. Chứng minh rằng:
4 điểm M,B,O,C cùng nằm trên một đường tròn.
Đoạn thẳng ME = R.
Khi điểm M di động mà OM = 2R thì điểm K di động trên một đường tròn cố định, chỉ rõ tâm và bán kính của đường tròn đó.
Câu 5 (1,0 điểm). Cho a,b,c là các số dương thỏa mãn a+ b + c =4. Chứng minh rằng :
SỞ GD&ĐT VĨNH PHÚC
KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013
ĐÁP ÁN ĐỀ THI MÔN : TOÁN
Ngày thi: 21 tháng 6 năm 2012
Câu
Đáp án, gợi ý
Điểm
C1.1
(0,75 điểm)
Biểu thức P xác định 
0,5
0,25
C1.2 (1,25 điểm)
P=
0,25
0,5
0,5
C2.1 (1,0 điểm)
Với a = 1, hệ phương trình có dạng: 
 Vậy với a = 1, hệ phương trình có nghiệm duy nhất là: 
0,25
0,25
0,25
0,25
C2.2 (1,0 điểm)
-Nếu a = 0, hệ có dạng: => có nghiệm duy nhất
-Nếu a , hệ có nghiệm duy nhất khi và chỉ khi: 
 (luôn đúng, vì với mọi a)
Do đó, với a , hệ luôn có nghiệm duy nhất.
 Vậy hệ phương trình đã cho có nghiệm duy nhất với mọi a.
0,25
0,25
0,25
0,25
C3 (2,0 điểm)
 Gọi chiều dài của hình chữ nhật đã cho là x (m), với x > 4.
Vì chiều rộng bằng nửa chiều dài nên chiều rộng là: (m)
=> diện tích hình chữ nhật đã cho là: (m2)
Nếu giảm mỗi chiều đi 2 m thì chiều dài, chiều rộng của hình chữ nhật lần lượt là: (m)
khi đó, diện tích hình chữ nhật giảm đi một nửa nên ta có phương trình: 
.=> (thoả mãn x>4); 
 (loại vì không thoả mãn x>4)
Vậy chiều dài của hình chữ nhật đã cho là (m).
0,25
0,25
0,25
0,25
0,25
0,5
0,25
C4.1 (1,0 điểm)
B
1) Chứng minh M, B, O, C cùng thuộc 1 đường tròn
Ta có: (vì MB là tiếp tuyến)
1
(vì MC là tiếp tuyến)O
2
1
K
M
=> MBO + MCO =
= 900 + 900 = 1800
1
E
B’
=> Tứ giác MBOC nội tiếp
C
(vì có tổng 2 góc đối =1800)
=>4 điểm M, B, O, C cùng thuộc 1 đường tròn
0,25
0,25
0,25
0,25
C4.2 (1,0 điểm)
2) Chứng minh ME = R:
Ta có MB//EO (vì cùng vuông góc với BB’) 
=> O1 = M1 (so le trong)
Mà M1 = M2 (tính chất 2 tiếp tuyến cắt nhau) => M2 = O1 (1)
C/m được MO//EB’ (vì cùng vuông góc với BC)
=> O1 = E1 (so le trong) (2)
Từ (1), (2) => M2 = E1 => MOCE nội tiếp
=> MEO = MCO = 900 
=> MEO = MBO = BOE = 900 => MBOE là hình chữ nhật
=> ME = OB = R (điều phải chứng minh)
0,25
0,25
0,25
0,25
C4.3 (1,0 điểm)
3) Chứng minh khi OM=2R thì K di động trên 1 đường tròn cố định:
Chứng minh được Tam giác MBC đều => BMC = 600
=> BOC = 1200 
=> KOC = 600 - O1 = 600 - M1 = 600 – 300 = 300
Trong tam giác KOC vuông tại C, ta có: 
Mà O cố định, R không đổi => K di động trên đường tròn tâm O, bán kính = (điều phải chứng minh)
0,25
0,25
0,25
0,25
C5 (1,0 điểm)
Do đó, 
0,25
0,25
0,25
0,25
Chú ý: -Câu 4, thừa giả thiết “tia Mx” và “điểm A” à gây rối.
	 -Mỗi câu đều có các cách làm khác 
 câu 5 
Cach 2: Đặt x = => x, y , z > 0 và x4 + y4 + z4 = 4.
BĐT cần CM tương đương: x3 + y3 + z3 > 
hay (x3 + y3 + z3 ) > 4 = x4 + y4 + z4
ó x3(-x) + y3(-y)+ z3(-z) > 0 (*).
Ta xét 2 trường hợp:
	- Nếu trong 3 sô x, y, z tồn tại it nhât một sô , giả sử x thì x3 .
Khi đo: x3 + y3 + z3 > ( do y, z > 0).
	- Nếu cả 3 sô x, y, z đều nhỏ thì BĐT(*) luôn đung.
Vậy x3 + y3 + z3 > được CM.
Cach 3: Có thể dùng BĐT thức Côsi kết hợp phương pháp làm trội và đánh giá cũng cho kết quả ànhưng hơi dài, phức tạp).
SỞ GD VÀ ĐÀO TẠO	KỲ THI TUYỂN SINH VÀO 10 THPT NĂM HỌC 2012-2013
 ĐĂKLĂK	MÔN THI : TOÁN
ĐỀ CHÍNH THỨC
Thời gian làm bài: 120 phút,(không kể giao đề)
Ngày thi: 22/06/2012
Câu 1. (2,5đ)
Giải phương trình:
a) 2x2 – 7x + 3 = 0.	b) 9x4 + 5x2 – 4 = 0.
Tìm hàm số y = ax + b, biết đồ thị hàm số của nó đi qua 2 điểm A(2;5) ; B(-2;-3).
Câu 2. (1,5đ)
Hai ô tô đi từ A đến B dài 200km. Biết vận tốc xe thứ nhất nhanh hơn vận tốc xe thứ hai là 10km/h nên xe thứ nhất đến B sớm hơn xe thứ hai 1 giờ. Tính vận tốc mỗi xe.
Rút gọn biểu thức: với x ≥ 0.
Câu 3. (1,5 đ)
Cho phương trình: x2 – 2(m+2)x + m2 + 4m +3 = 0.
Chứng minh rằng : Phương trình trên luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.
Tìm giá trị của m để biểu thức A = đạt giá trị nhỏ nhất.
Câu 4. (3,5đ)
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC). Hai tiếp tuyến tại B và C cắt nhau tại M. AM cắt đường tròn (O) tại điểm thứ hai D. E là trung điểm đoạn AD. EC cắt đường tròn (O) tại điểm thứ hai F. Chứng minh rằng:
Tứ giác OEBM nội tiếp.
MB2 = MA.MD.
.
BF // AM
Câu 5. (1đ)
Cho hai số dương x, y thõa mãn: x + 2y = 3. Chứng minh rằng: 
Bài giải sơ lược:
Câu 1. (2,5đ)
Giải phương trình:
a) 2x2 – 7x + 3 = 0.	
 = (-7)2 – 4.2.3 = 25 > 0
	= 5. Phương trình có hai nghiệm phân biệt: 
9x4 + 5x2 – 4 = 0. Đặt x2 = t , Đk : t ≥ 0.
Ta có pt: 9t2 + 5t – 4 = 0.
	a – b + c = 0 t1 = - 1 (không TMĐK, loại)
	 t2 = (TMĐK)
	 t2 = x2 = x =.
Vậy phương trình đã cho có hai nghiệm: x1,2 = 
Đồ thị hàm số y = ax + b đi qua hai điểm A(2;5) và B(-2;-3) 
Vậy hàm số càn tìm là : y = 2x + 1
Câu 2.
Gọi vận tốc xe thứ hai là x (km/h). Đk: x > 0
Vận tốc xe thứ nhất là x + 10 (km/h)
Thời gian xe thứ nhất đi quảng đường từ A đến B là : (giờ)
Thời gian xe thứ hai đi quảng đường từ A đến B là : (giờ)
Xe thứ nhất đến B sớm 1 giờ so với xe thứ hai nên ta có phương trình: 
Giải phương trình ta có x1 = 40 , x2 = -50 ( loại)
x1 = 40 (TMĐK). Vậy vận tốc xe thứ nhất là 50km/h, vận tốc xe thứ hai là 40km/h.
Rút gọn biểu thức: 
= = x, với x ≥ 0.
Câu 3. (1,5 đ)
Cho phương trình: x2 – 2(m+2)x + m2 + 4m +3 = 0.
Chứng minh rằng : Phương trình trên luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.
Ta có > 0 với mọi m.
Vậy phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.
phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m. Theo hệ thức Vi-ét ta có : 
A = = (x1 + x2)2 – 2 x1x2 = 4(m + 2)2 – 2(m2 + 4m +3) = 2m2 + 8m+ 10 
	= 2(m2 + 4m) + 10
	= 2(m + 2)2 + 2 ≥ 2 với mọi m.
Suy ra minA = 2 m + 2 = 0 m = - 2 
Vậy với m = - 2 thì A đạt min = 2
Câu 4.
Ta có EA = ED (gt) OE AD ( Quan hệ giữa đường kính và dây)
 = 900; = 900 (Tính chất tiếp tuyến)
E và B cùng nhìn OM dưới một góc vuông Tứ giác OEBM nội tiếp.
2) Ta có sđ ( góc nội tiếp chắn cung BD)
	sđ ( góc tạo bởi tia tiếp tuyến và dây cung chắn cung BD)
. Xét tam giác MBD và tam giác MAB có:
Góc M chung, đồng dạng với 
MB2 = MA.MD
Ta có: = sđ ( Tính chất hai tiếp tuyến cắt nhau); sđ (góc nội tiếp) .
Tứ giác MFOC nội tiếp ( = 1800) ( hai góc nội tiếp cùng chắn cung MC), mặt khác (theo câu 3) BF // AM.
Câu 5. 
Ta có x + 2y = 3 x = 3 – 2y , vì x dương nên 3 – 2y > 0
Xét hiệu = ≥ 0 ( vì y > 0 và 3 – 2y > 0)
 dấu “ =” xãy ra 
SỞ GIÁO DỤC VÀO ĐÀO TẠO HẢI DƯƠNG
-----------------
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2012-2013
MÔN THI: TOÁN
Thời gian làm bài 120 phút (không kể thời gian giao đề)
Ngày thi: Ngày 12 tháng 7 năm 2012
(Đề thi gồm: 01 trang)
Câu 1 (2,0 điểm):
Giải các phương trình sau:
x(x-2)=12-x.
Câu 2 (2,0 điểm):
Cho hệ phương trình có nghiệm (x;y). Tìm m để biểu thức (xy+x-1) đạt giái trị lớn nhất.
Tìm m để đường thẳng y = (2m-3)x-3 cắt trục hoành tại điểm có hoành độ bằng .
Câu 3 (2,0 điểm):
Rút gọn biểu thức với và .
Năm ngoái, hai đơn vị sản xuất nông nghiệp thu hoạch được 600 tấn thóc. Năm nay, đơn vị thứ nhất làm vượt mức 10%, đơn vị thứ hai làm vượt mức 20% so với năm ngoái. Do đó cả hai đơn vị thu hoạch được 685 tấn thóc. Hỏi năm ngoái, mỗi đơn vị thu hoạch được bao nhiêu tấn thóc?
Câu 4 (3,0 điểm):
	Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Vẽ các đường cao BE, CF của tam giác ấy. Gọi H là giao điểm của BE và CF. Kẻ đường kính BK của (O) .
Chứng minh tứ giác BCEF là tứ giác nội tiếp.
Chứng minh tứ giâc AHCK là mình bình hành.
Đường tròn đường kính AC cắt BE ở M, đường tròn đường kính AB cặt CF ở N. Chứng minh AM = AN.
Câu 5 (1,0 điểm):
	Cho a, b, c, d là các số thực thỏa mãn: b + d 0 và . Chứng minh rằng phương trình (x2 + ax +b)(x2 + cx + d)=0 (x là ẩn) luôn có nghiệm.
---------------------Hết--------------------
HƯỚNG DẪN - ĐÁP ÁN
Câu 1: a ) x = - 3 và x = 4. b) x = - 2; loại x = 4.
Câu 2: a) Hệ => x = m + 2 và y = 3 - m => A = (xy+x-1) = = 8 - ( m -1)2
 Amax = 8 khi m = 1.
 b) Thay x = 2/3 và y = 0 vào pt đường thẳng => m = 15/4
Câu 3: a) A = 1
 b) x + y = 600 và 0,1x + 0,2y = 85 hay x + 2y = 850. 
 Từ đó tính được y = 250 tấn, x = 350 tấn
Câu 4 (3,0 điểm):
a) 
b) AH//KC ( cùng vuông góc với BC)
 CH // K

Tài liệu đính kèm:

  • docbo_de_thi_tuyen_sinh_vao_lop_10_thpt_mon_toan_nam_hoc_2012_2.doc