Bộ đề thi thử THPT Quốc gia môn Toán - Đề số 84

pdf 6 trang Người đăng khoa-nguyen Lượt xem 975Lượt tải 0 Download
Bạn đang xem tài liệu "Bộ đề thi thử THPT Quốc gia môn Toán - Đề số 84", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bộ đề thi thử THPT Quốc gia môn Toán - Đề số 84
 Câu 1. (2,0 điểm) Cho hàm số 
2 1
1
x
y
x



 có đồ thị (C). 
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 
b) Tìm các giá trị của tham số m để đường thẳng d: y = mx - 1 cắt (C) tại hai điểm phân biệt 
A, B sao cho diện tích tam giác ABC bằng 
3
2
, biết C(1; -1). 
Câu 2. (1,0 điểm) Giải phương trình 2
2 2log (2 ) 5 log 1 0.  x x 
Câu 3. (1,0 điểm) 
a) Tìm số phức z thỏa  3 1  z z i . 
b) Một giá sách có 5 quyển sách Toán, 4 quyển sách Lí và 1 quyển sách Hóa. Chọn ra ngẫu 
nhiên 4 quyển. Tìm xác suất để 4 quyển chọn ra có đủ 3 môn Toán, Lí và Hóa. 
Câu 4. (1,0 điểm) Tính tích phân 
2
6
cot
cos2
 
x
I dx
x


. 
Câu 5. (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( ) : 2 3 0   P x y z và 
đường thẳng d: 
4
3
 

 
 
x t
y t
z t
. 
a) Tìm tọa độ giao điểm I của đường thẳng d và mặt phẳng (P). 
b) Viết phương trình đường thẳng 
nằm trong (P), vuông góc với d và cắt d. 
Câu 6. (1,0 điểm) Cho hình chóp S.ABC có có , , 3
2
a
AB AC a BC SA a    . Biết góc 
030 SAB SAC . Chứng minh rằng SA vuông góc với BC và tính thể tích của khối chóp S.ABC 
theo a. 
Câu 7. (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(1;2) và hai đường thẳng 
1 : 2 1 0  d x y , 2 : 2 2 0  d x y . Gọi A là giao điểm của 1d và 2d . Viết phương trình đường 
thẳng d qua M và cắt 
1d , 2d lần lượt tại B, C (B và C không trùng với A) sao cho 2 2
1 1

AB AC
 đạt 
giá trị nhỏ nhất. 
Câu 8. (1,0 điểm) Giải hệ phương trình 
 
 
2 2
2 2
3 12 24 9 2 2 0
 , .
5 7 15
     

  

x y xy x y xy
x y
x y xy
Câu 9. (1,0 điểm) Cho ,a b là các số thực dương thỏa mãn 3  a b ab . 
 Tìm giá trị nhỏ nhất của biểu thức: 
2 2
1 1
  
  
a b ab
P
b a a b
. 
---------- HẾT ---------- 
SỞ GD&ĐT QUẢNG NAM 
TRƯỜNG THPT NGUYỄN HUỆ 
KỲ THI THPT QUỐC GIA NĂM HỌC 2014-2015 
Môn thi: Toán 
Thời gian làm bài: 180 phút (không kể thời gian phát đề) 
ĐỀ THAM KHẢO 
Cảm ơn thầy Nguyễn Thành Hiển (https://www.facebook.com/HIEN.0905112810) đã chia sẻ đên 
www.laisac.page.tl
 SỞ GD&ĐT QUẢNG NAM 
TRƯỜNG THPT NGUYỄN HUỆ 
HƯỚNG DẪN CHẤM 
KỲ THI THPT QUỐC GIA NĂM HỌC 2014-2015 
Môn thi: Toán 
Câu Đáp án Điểm 
1.a 1,0 
  Tập xác định:  \ 1D   
 Sự biến thiên 
 
,
2
3
0, 1
1
y x
x

   

. 
0,25 
+ Hàm số nghịch biến trên mỗi khoảng ( ;1) và (1; ) . 
+ Hàm số không có cực trị 
+ Giới hạn: 
 * lim 2; lim 2
x x
y y
 
   Đường thẳng y=2 là tiệm cận ngang của đồ thị hàm số. 
 *
1 1
lim ;lim
x x
y y
  
    Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số. 
0,25 
 Bảng biến thiên: 
1
2 2
-∞
+∞
+∞
-∞
y
y'
x
0,25 
 Đồ thị: Giao điểm của (C) với Ox là 
1
;0
2
 
 
 
, giao điểm của (C) với Oy là  0; 1 
 Đồ thị nhận  1;2I làm tâm đối xứng 
0,25 
1.b 1,0 
Phương trình hoành độ giao điểm của d và (C): 
2
12 1
1
1 ( 3) 0

   
   
xx
mx
x mx m x 
0,25 
ĐỀ THAM KHẢO 
10
3(2)


 
  
x
x
mx m
 Để d cắt (C) tại hai điểm phân biệt thì pt (2) có một nghiệm khác 0 và 1
0
3

 
 
m
m
0,25 
Khi đó  
3
0; 1 , ( ; 2)

 
m
A B m
m
23 . 1

  
m
AB m
m
, 
2
( , )
1


m
d C d
m
 0,25 
03
3 3
62

       
ABC
m
S m
m
Vậy m = -6 là giá trị cần tìm. 
0,25 
2 1,0 
 Đk x > 0. 0,25 
2 2
2 2 2 2log (2 ) 5log 1 0 log 3log 2 0      x x x x 0,25 
2
2
log 1 2
log 2 4
  
   
x x
x x
Vậy nghiệm của phương trình là x = 2, x = 4. 
0,5 
3a  3 1  z z i 0,5 
 Gọi ; ,  z a bi a b
  2 23 1 ( 3) 1        z z i a b b a i 
0,25 
2 2 31
43 0
    
  
   
aa b b
ba 
Vậy 3 4 z i 
0,25 
3b 0,5 
 Gọi A là biến cố: “4 quyển chọn ra có đủ 3 môn Toán, Lí và Hóa ”. 
Ta có 4
10( ) n C 
0,25 
Số cách chọn 2 quyển sách Toán, 1 quyển sách Lí là 2 1
5 4.C C . 
Số cách chọn 1 quyển sách Toán, 2 quyển sách Lí là 1 2
5 4.C C . 
Do đó 2 1 1 2
5 4 5 4( ) . . 70  n A C C C C 
Vậy   4
10
( ) 70 1
( ) 3
  

n A
P A
n C
0,25 
4 1,0 
Ta có: 
2 2
2
6 6
cot cos
cos 2 sin (1 2sin )
 
 
x x
I dx dx
x x x
 
 
 0,25 
Đặt sin cos  t x dt xdx
1
, 1
6 2 2
     x t x t
 
0,25 
Khi đó 
1
2
1
2
1
(1 2 )


I dt
t t
1
2
2
1
2
1
1 2 1
 ln ln 1 2 1
1 2 2
2
   
       
   

t
dt t t
t t
 0,5 
1
ln 2
2
 0,25 
5 1,0 
a) Tọa độ điểm I là nghiệm của hệ 
4
3
3
4
1
2 3 0
 
   
  
       x y
x t
x
y t
y
z t
z
z
Vậy I(3; 4; -1) 
0,5 
 b) Đường thẳng d có véctơ chỉ phương (1; 1;1) 

u và mặt phẳng (P) có véctơ pháp 
tuyến (1; 1;2) 

n 
 Đường thẳng  có véctơ chỉ phương , (1;1;0)  
 
 
n u và đi qua I nên có phương trình tham 
số 
3
4
1
 

 
  
x t
y t
z
0,5 
6 1,0 
a
2
a 3
a
a
300
F
E
S
A
B
C
Gọi E là trung điểm của BC. 
Ta có BC AE
Mặt khác,       SAB SAC SB SC BC SE 
Do đó BC SA 
0,5 
Theo định lý cosin trong tam giác SAB ta có 
2 2 2 0 2 2 232 . . os30 3 2 3. .
2
        SB SA AB SA AB c a a a a a SB a 
 EA ES 
0,5 
Gọi F là trung điểm SA, ta có EF SA
và 
22 2
2 2 2 2 2 2 2 3 3 3
4 2 16 4
  
            
   
a a a a
EF AE AF AB BE AF a EF 
Ta có 
3
. . .
1 1 1
. . . . . .
3 3 2 16
    S ABC B SAE C SAE SAE
a
V V V BC S BC SA EF 
7 1,0 
Ta có 
2 1 0 1
( 1;0)
2 2 0 0
     
   
    
x y x
A
x y y
và 1 2d d 
0,25 
Gọi H là hình chiếu vuông góc của A trên d. 
Khi đó 
2 2 2 2
1 1 1 1
  
AB AC AH AM
Do đó 
2 2
1 1

AB AC
 nhỏ nhất khi H trùng với M. 
0,5 
Vậy d là đường thẳng vuông góc với AM tại M nên có phương trình 3 0  x y 0,25 
8 1,0 
  
 
2 2
2 2
3 12 24 9 2 2 0(1)
 , .
5 7 15(2)
     

  

x y xy x y xy
x y
x y xy 
ĐK 0xy
    
2
(1) 2 4 3 2 2 (3)    x y xy x y xy 
0,25 
Ta có x = 0 hoặc y = 0 không là nghiệm của hệ nên 0xy . Chia hai vế của (3) cho 
 2 2x y xy ta được 
2 22
3(4)
22

 

xyx y
x yxy
Đặt 
2
2
2

 
x y
t
xy
 ta được 
2
3 2   t t
t
0,25 
2
2 2 2
2x

    
x y
t x y
y
Thay 2x y vào (2) ta được 2 1 1  y y 
Vậy hệ có nghiệm    ; 2;1 .x y 
0,5 
9 1,0 
 Đặt 0 3     x a b ab x 
Ta có      
2 2 2
4 0 4       a b ab a b a b ab
2 4(3 ) 2    x x x (do x > 0) 
Khi đó, 
3 3 2 2 3 2( ) 3 ( ) 2
( 1)( 1) 1
( )       
   
     


aba b a b ab a b a b ab
P
a b a b a
a b ab
b ab a b
3
2 7 3 5
4 4 2
    
x
x x
x
0,5 
---------- HẾT ---------- 
Xét
3
2 7 3 5( ) , 2
4 4 2
     
x
f x x x x
x
 Ta có 2
2
3 7 3
'( ) 2 0, 2
4 4
      f x x t x
x 
3
( ) (2) .
2
  f x f 
Do đó, 
2
3
P và 1.
3
2
   P a b 
Vậy GTNN của P bằng 
3
2
. 
0,5 
Cảm ơn thầy Nguyễn Thành Hiển (https://www.facebook.com/HIEN.0905112810) đã chia sẻ đên 
www.laisac.page.tl

Tài liệu đính kèm:

  • pdfkimtrong.de084.2015.pdf