Bài 1: giải các phương trình Bài 2: Tìm nghiệm thuộc khoảng (0; 2) của phương trình: Bài 3: Tìm xnghiệm đúng của phương trình: cos3x – 4cos2x + 3cosx – 4= 0 Bài 4: Xác định m để phương trình 2(sin4x + cos4x) + cos4x + 2sin2x + m = 0 có ít nhất 1 nghiệm thuộc đoạn Bài 5: Cho phương trình: Giải phương trình (1) khi a = Tìm a để phương trình (1) có nghiệm. Bài 6: Tìm x thỏa mãn phương trình Bài 7: Cho phương trình: 4cos3x + (m – 3)cosx – 1 = cos2x Giải phương trình khi m = 1 Tìm m để phương trình có đúng 4 nghiệm phân biệt thuộc khoảng BÀI TẬP PHƯƠNG TRÌNH LƯỢNG GIÁC NÂNG CAO LỚP 11 Bài 1. Giải các phương trình Bài 2. Giải các phương trình (Dạng: at2 + bt + c = 0) Bài 3. Giải các phương trình Bài 4. Giải phương trình. (Phương trình đẳng cấp đối với sinx và cosx) Bài 5. Giải các phương trình.(Dạng: asinx + bcosx = c) Bài 6. Tìm nghiệm của phương trình sau trong khoảng đã cho. với với với với Bài 7. Tìm giá trị lớn nhất, nhỏ nhất của hàm số. Bài 8. Tìm TXĐ Bài 9. Giải các phương trình (Dạng đối xứng và phản đối xứng) Bài 10. Giải các phương trình Sau đây là 1 vài bài thi đại học đơn giản ĐẠI HỌC NGOẠI THƯƠNG 2000 sin^8 x + cos^8 x = 2(sin^10 x + cos^10 x ) + 5/4 cos2x ĐẠI HỌC NGOẠI NGỮ 1999 2sin^3 x -- cos2x +cosx = 0 ĐẠI HỌC NGOẠI NGỮ 2000 1+ cos^3 x -- sin^3 x =sin2x HỌC VIỆN QUAN HỆ QUỐC TẾ 1989 cos^2 x +cos^2 2x + cos^2 3x +cos^ 4x = 3/2 ĐẠI HỌC QUỐC GIA 1989 - khối B sin^3 x + cos^3 x = 2(sin^5 x + cos^5 x ) ĐẠI HỌC QUỐC GIA 1989 khối D sin^2 x = cos^2 2x + cos^2 3x ĐẠI HỌC QUỐC GIA 2000 khối B cos^6 x -- sin^6 x = 13/8 cos^2 2x ĐẠI HỌC SƯ PHẠM HỒ CHÍ MINH 2000 – KB 2cos^2 x + 2cos^2 2x + 2cos^2 3x -- 3 = cos4x(2sin2x +1) ĐẠI HỌC Y HÀ NỘI 1999 4sin^3 x -- sin x -- cosx = 0 ĐẠI HỌC Y HÀ NỘI 2000 sin 4x = tan x ĐẠI HỌC QUỐC GIA 2000 –KA 2sin2x --cos2x = 7sin x + 2cos -- 4 ĐẠI HỌC SƯ PHẠM 2000 4cos^3 x + 3\sqrt[n]{2} sin 2x = 8cosx
Tài liệu đính kèm: