Bài tập Hình học lớp 9

pdf 64 trang Người đăng khoa-nguyen Lượt xem 6278Lượt tải 4 Download
Bạn đang xem 20 trang mẫu của tài liệu "Bài tập Hình học lớp 9", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bài tập Hình học lớp 9
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
Hệ thức lượng trong tam
giác
1. a) Cho tam giác ABC vuông tại A. Gọi H là chân đường
cao hạ từ A. Biết rằng AB = 7cm,AC = 9cm. Tính
BH,CH,AH.
b) Cho tam giác ABC vuông tại A có đường cao AH.
Biết BH = 4cm,CH = 9cm. Tính AH,AB,AC.
2. Cho tam giác ABC cân tại A, đường cao AH. BiếtBC =
a,AH = h. Tính độ dài cạnh bên theo a, h.
3. Cho tam giác ABC vuông tại A, đường cao AH, kẻ HM
vuông góc với AB tạiM . Chứng minh rằngBM =
AB3
BC2
.
4. Cho tam giác ABC vuông tại A. Biết tỉ số hai cạnh góc
vuông là
4
5
, độ dài cạnh góc vuông nhỏ bằng 6cm. Tính
độ dài cạnh huyền, độ dài hình chiếu của các cạnh góc
vuông lên cạnh huyền.
5. Tam giác ABC có AB = 48cm,AC = 14cm,BC =
50cm. Tính độ dài đường phân giác của góc C.
6. Tam giác ABC có cạnh AB = 26cm,AC = 25cm, đường
cao AH = 24cm. Tính độ dài cạnh BC.
7. Hình thang ABCD có AB = 15cm,CD = 20cm. Cạnh
bên AD = 12cm và vuông góc với hai đáy. Tính độ dài
cạnh BC.
8. Tam giác ABC cân tại A có cạnh bên bằng 15cm, cạnh
đáy bằng 18cm. Tính độ dài các đướng cao.
1
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
9. Tam giác ABC có góc A nhọn, AB = c, CB = b. Cho
biết diện tích tam giác là S =
2
5
bc. Tính cạnh BC theo
b, c.
10. Tính diện tích của hình thang có độ dài các đáy là
a, b(a > b) các góc kề với đáy lớn lần lượt là 30o và
45o.
11. Cho tam giác ABC có B̂AC > 90o. Kẻ đường cao CH.
Chứng minh rằng BC2 = AB2 + AC2 + 2.AB.AH.
12. Cho tam giác ABC nhọn có AH là đường cao. D,E
lần lượt là hình chiếu của H trên AB,AC. Chứng minh
rằng:
a) AD.AB = AE.AC
b) ÂED = ÂBC
13. Cho tam giác nhọn ABC với BD,CE là hai đường cao.
Các điểm N,M trên các đường thẳng BD,CE sao cho
ÂMB = ÂNC = 90o. Chứng minh rằng tam giác AMN
cân.
14. Cho hình thoi ABCD có Â = 120o. Tia Ax tạo với AB
một góc B̂Ax một góc bằng 15o và cắt cạnh BC tại M ,
cắt đường thẳng CD tại N .
Chứng minh rằng:
1
AM2
+
1
AN2
=
1
3AB2
15. Cho tam giác ABC vuông cân tại A, đường trung tuyến
BM . Gọi D là hình chiếu của C trên BM , H là hình
chiếu của D trên AC. Chứng minh rằng AH = 3HD.
16. Cho tam giác ABC có độ dài các cạnh AB,BC,CA là
ba số tự nhiên liên tiếp tăng dần. Kẻ đường cao AH,
đường trung tuyến AM . Chứng minh rằng HM = 2.
2
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
17. Chứng minh rằng tam giác ABC là tam giác vuông nếu
các đường phân giác BD,CE cắt nhau tại I thỏa mãn
BD.CE = 2BI.CI
18. Chứng minh rằng trong một tam giác:
a) Bình phương của cạnh đối diện với góc nhọn bằng
tổng các bính phương của hai cạnh kia trừ đi hai lần
tích của một trong hai cạnh ấy với hình chiếu của cạnh
kia trên nó.
b) Bình phương của cạnh đối diện với góc tù bằng tổng
các bình phương của hai cạnh kia cộng với hai lần tích
của một trong hai cạnh ấy với hình chiếu của cạnh kia
trên nó.
19. Qua điểm D trên cạnh huyền BC của tam giác vuông
ABC ta kẻ các đường vuông góc DH và DK lần lượt
xuống các cạnhAB vàAC. Chứng minh hệ thức:DB.DC =
HA.HC +KA.KC
20. Cho tam giác ABC vuông tại A có đường cao AH. Kẻ
HE,HF vuông góc với AB,AC. Chứng minh rằng:
a)
EB
FC
=
AB3
AC3
b) BC.BE.CF = AH3
21. Tam giác ABC vuông tại A có đường trung tuyến CM .
Ta kẻ đường caoMH của tam giácMBC và đặt trên tia
AB đoạn AD = BH. Chứng minh rằng tam giác CDM
cân.
22. Tam giác ABC cân tại A, gọi I là giao điểm của các
đường phân giác. Biết rằng IA = 2
√
5cm, IB = 3cm.
Tính độ dài AB.
3
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
23. Tam giác ABC có BC = 40cm, đường phân giác AD
dài 45cm, đường cao AH dài 36cm. Tính các độ dài
BD,DC.
24. Không dùng bảng số và máy tính, tính : sin 15o.
25. Chứng minh các công thức sau:
a) sin 2α = 2 sinα. cosα
b) 1 + cos 2α = cos2α
26. Tam giác ABC có Â = B̂ + 2Ĉ và độ dài ba cạnh là ba
số tự nhiên liên tiếp. Tính độ dài các cạnh của tam giác.
27. Cho tam giác ABC. Chứng minh rằng:
a) SABC =
1
2
AB.AC sin B̂AC nếu B̂AC ≤ 90o.
b) SABC =
1
2
AB.AC sin(180o − B̂AC) nếu B̂AC > 90o.
28. Với mọi góc nhọn α, chứng minh:
a) tgα =
1
cotgα
b)
tgα
cotgα
=
sin2 α
cos2 α
c) sin2 α− cos4 α = sin2 α− cos2 α
29. Cho tam giác ABC vuông tại A, có AB = 3
√
3cm,AC =
2
√
5. Tính BC, tính các góc B,C.
30. Tứ giác ABCD có các đường chéo cắt nhau ởO và không
vuông góc với nhau. Gọi H,K lần lượt là trực tâm của
các tam giác AOB và COD. Gọi G, I lần lượt là trọng
tâm của các tam giác BOC,AOD.
a) Gọi E là trọng tâm của tam giác AOB, F là giao
điểm của AH và DK. Chứng minh rằng các tam giác
4
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
IEG và HFK đồng dạng.
b) Chứng minh rằng IG⊥HK
31. Cho tam giác có ba góc nhọn. Đặt BC = a,AC =
b, AB = c.
Chứng minh rằng:
a
sin Â
=
b
sin B̂
=
c
sin Ĉ
32. Cho tam giác ABC nhọn, có BC = a,AC = b, AB = c.
Chứng minh rằng: a2 = b2 + c2 − 2bc. cos Â
33. Cho tam giác ABC có BC = a,AC = b, AB = c. Chứng
minh rằng: sin
A
2
≤ a
2
√
bc
.
Từ đó suy ra: sin
A
2
. sin
B
2
. sin
C
2
≤ 1
8
34. Cho tam giác ABC có các đường trung tuyến BM và
CN vuông góc nhau. Chứng minh rằng cotB+cotC ≥
2
3
35. Cho góc nhọn α. Tìm giá trị lớn nhất nhất của:
1
sin4 α
+
1
cos4 α
.
5
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
Định nghĩa và sự xác định
đường tròn
1. Tính bán kính đường tròn đi qua 3 đỉnh của tam giác
cân có cạnh đáy bằng đường cao tương ứng h.
2. Hình chữ nhật ABCD có các đỉnh thuộc đường tròn
(O;R). Chứng minh rằng tổng bình phương các khoảng
cách từ một điểm M ∈ (O) đến các đường thẳng chứa
cạnh của hình chữ nhật không phụ thuộc vào vị trí của
M và tính tổng đó theo R.
3. Cho hình thang cân ABCD ( đáy nhỏ AB), hai đường
chéo AC và BD cắt nhau tại I. Gọi M,N,P,Q lần lượt
là trung điểm của AB,BC,CD,DA. Chứng minh rằng:
a) Độ dài đường cao và độ dài đường trung bình của
hình thang là bằng nhau.
b) M,N,P,Q cùng nằm trên một đường tròn.
4. Cho đường tròn (O) có đường kính AC cố định. BD là
dây cung vuông góc với AC.
a) Viết công thức tính diện tích tứ giác ABCD theo hai
đường chéo AC,BD.
b) Tìm vị trí của dây BD lúc ABCD có diện tích lớn
nhất, chứng tỏ lúc ấy ABCD là hình vuông.
5. Cho đường tròn (O) có đường kính BC = 5cm và dây
cung BA = 3cm.
a) Chứng tỏ 4ABC vuông tại A, tính độ dài AC và
đường cao AH của 4ABC.
b) Gọi D là đỉnh của4BCD có CD = 3cm,BD = 4cm.
Chứng tỏ D nằm trên đường tròn (O).
6
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
6. Cho tam giác ABC vuông tại A.
a) Xác định tâmO của đường tròn đi qua 3 điểmA,B,C.
b) Vẽ đường cao AH và đường kính AD. Chứng tỏ
hai tam giác CAH,DAB đồng dạng, suy ra AB.AC =
AH.AD.
7. Cho tam giác ABC (Â 6= 90o), đường tròn có đường kính
BC cắt hai đường thẳng AB,AC lần lượt tại D,E. Hai
đường thẳng CD,BE cắt nhau tại H. Chứng tỏ H là
trực tâm của 4ABC và suy ra AH vuông góc với BC.
8. Cho đường tròn (O) có đường kính BC cố định và điểm
A ∈ (O). Trên tia đối của tia AB lấy đoạn AD =
AC,trên tia đối của tia AC lấy đoạn AE = AB.
a) Chứng tỏ 4ABC và 4AED bằng nhau.
b) Đường thẳng qua đường cao AH của 4ABC cắt DE
tại M . Chứng tỏ M là tâm đường tròn ngoại tiếp tam
giác ADE.
c) Chứng minh AO⊥DE
9. Cho hai điểm A và B cố định. Một đường thẳng d đi
qua A. Gọi P là điểm đối xứng của B qua d.
a) Tìm quỹ tích các điểm P khi d quay xung quanh điểm
A.
b) Xác định vị trí của để BP có độ dài lớn nhất. Xác
định vị trí của d để BP có độ dài bé nhất.
10. Cho hình thang cân ABCD (AB//CD); BC = CD =
1
2
AD = a.
a) Chứng minh A,B,C,D nằm trên một đường tròn.
Hãy xác định tâm O và bán kính của đường tròn này.
b) Chứng minh AC⊥OB.
7
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
11. Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi
H là trực tâm của tam giác; N,P,Q lần lượt là trung
điểm của AH,AB,AC. Chứng minh ONPQ là hình
bình hành.
12. Cho tam giác ABC, các góc đều nhọn. Vẽ đường tròn
tâm S đường kính AB, vẽ đường tròn tâm O đường
kính AC. Đường thẳng OS cắt đường tròn (S) tại D,E,
cắt đường tròn (O) tại H,K(các điểm xếp theo thứ tự
D,H,E,K)
a) Chứng minh BD,BE là những đường phân giác của
góc ÂBC, CK,CH là những đường phân giác của góc
ÂCB.
b) Chứng minh rằng BDAE,AHCK là những hình chữ
nhật.
13. Cho đường tròn (O) đường kính AB. Vẽ bán kính OC
vuông góc với AB tại O. Lấy điểm M trên cung AC.
Hạ MH⊥OA. Trên bán kính OM lấy điểm P sao cho
OP = MH.
a) KhiM chạy trên cung AC thì điểm P chạy trên đường
nào?
b) Tìm những điểm P chạy trên bán kính PM sao cho
OP bằng khoảng cách từ M đến AB khi M chạy khắp
(O)
14. Cho đường tròn tâm O đường kính AB cố định. Lấy
điểm C tùy ý trên đường tròn. Trên tia AC, lấy điểm
M sao cho AM = BC. Điểm M chạy trên đường nào
khi C chạy trên đường tròn (O).
8
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
Tính chất đối xứng
1. Trong đường tròn (O;R) cho dây cung AB di động
nhưng có độ dài không đổi AB = l. Gọi I là trung
điểm của AB.
a) Chứng minh OI⊥AB
b) Tính độ dài OI theo R, l và suy ra I di động trên
một đường tròn cố định
2. Cho tam giác ABC cân nội tiếp trong đường tròn (O;R)
có độ dài cạnh AB = AC = R.
a) Chứng minh rằng tia AO là phân giác của góc B̂AC
b) Chứng tỏ BC > AB, suy ra thứ tự khoảng cách từ
tâm O đến các cạnh của tam giác ABC.
c) Tính theo R độ dài cạnh BC, chiều cao hạ từ A và
diện tích của 4ABC
3. Trong đường tròn (O;R) cho dây cung di động AB có
độ dài không đổi l = R
√
3. Chứng minh rằng các trung
điểm I của AB thuộc một đường tròn cố định tâm O
bán kình r =
R
2
.
4. Cho đường tròn (O) có đường kính BC vuông góc với
dây cung AD tại H.
a) Chứng minh hai tam giác BAD,CAD cân và tứ giác
BACD có các góc đối diện bù nhau.
b) Chứng tỏ HB.HC = HA2 = HD2.
5. Trong đường tròn (O;R) có hai bán kính OA,OB vuông
góc nhau, M là trung điểm của AB.
a) Chứng minh OM⊥AB.
b) Tính đột dài AB,OM theo R.
9
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
c) Cho A,B di động nhưng vẫn có OA⊥OB. Chứng
minh các điểm M thuộc về một đường tròn cố định.
6. Trên đường trình (O;R) có ba điểm A,B,C sao cho tam
giác ABC cân tại A.
a) Cho trước A hãy vẽ B,C.
b) Chứng tỏ AO là tia phân giác của góc BAC và đường
thẳng AO là trung trực của BC.
c) Cho biết R = 5cm,AB = 8cm và gọi A′ là điểm đối
xứng của A qua O. Tính độ dài các đoạn thẳng BA′, BC.
7. Cho 4ABC đều có cạnh a, chiều cao AH.
a) Hãy vẽ tâm O của đường tròn ngoại tiếp tam giác
ABC.
b) Chứng tõ4OHB là nửa tam giác đều. Tính OH, h, a
theo bán kính R của đường tròn ngoại tiếp tam giác
ABC.
c) Dựa vào vị trí cùa H trên đường kính AD mà suy ra
một các vẽ tam giác đều có 3 đỉnh nằm trên một đường
tròn cho trước.
8. Gọi I là trung điểm của dây cung không qua tâm AB
của đường tròn (O;R)
a) Chứng minh OI⊥AB
b) Qua I vẽ dây cung EF , chứng tỏ EF ≥ AB. Tìm độ
dài lớn nhất và nhỏ nhất của các dây cung quay quanh
I
c) Cho R = 5cm,OI = 4cm, tính độ dài dây cung ngắn
nhất qua I.
9. Cho điểm A cố định trong đường tròn (O;R) và MN là
dây cung quay quanh A.
a) Chứng minh rằng trung điểm I của các dây cungMN
10
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
thuộc về đường tròn cố định có đường kính OA
b) Tia OI cắt đường tròn tại C. Chứng tỏ tứ giác OACB
là hình thoi, tính diện tích của OACB theo R.
10. Trong một đường tròn tâm O, cho hai dây AB và CD
song song với nhau. Biết AB = 30cm,CD = 40cm;
khoảng cách giữa AB và CD là 35cm. Tính bán kính
của đường tròn.
11. Cho đường tròn tâm A bán kính AB. Dây EF kéo dài
cắt đường thẳng AB tại C (E nằm giữa F và C). Hạ
AD⊥CF . Cho AB = 10cm;AD = 8cm;CF = 21cm.
Tính CE và CA.
12. Cho tam giác vuông cân ABC (AB = AC) đường cao
AH. Trên đoạn thẳng HC lấy điểm K rồi dựng hình chữ
nhật AHKO. Lấy O làm tâm, vẽ đường tròn bán kính
OK, đường tròn này cắt cạnh AB tại D, cắt cạnh AC
tại E. Gọi F là giao điểm thứ hai của đường tròn (O)
với đường thẳng AB. Chứng minh:
a) Tam giác AEF cân
b) OD⊥OE
c) D,A,E,O cùng nằm trên một đường tròn.
13. *Cho tam giác ABC nội tiếp (O). Dựng ra phía ngoài
tam giác các hình chữ nhật ACDE và BCFG có diện
tích bằng nhau. Chứng minh rằng OC đi qua trung điểm
N của DF .
14. Cho đường tròn (O) cố định và dây cung AB không qua
tâm cố định của (O). C là điểm do động trên cung AB.
M là trung điểm BC. Từ M vẽ đường thẳng vuông góc
với AC tại H. a) Chứng minh rằngMH luôn đi qua một
11
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
điểm cố định. b) Tìm đường di chuyển của M khi C di
chuyển trên cung nhỏ AB.
12
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
Vị trí tương đối giữa đường thẳng
và đường tròn
Tiếp tuyến của đường tròn
1. Hai tiếp tuyến tại A và B của đường tròn (O;R) gặp
nhau tại C. Đường vuông góc với OA kẻ từ O gặp BC
tại D; đường vuông góc với AC kẻ từ C gặp OB tại E.
a) Chứng mình rằng các tam giác DOC và EOC là các
tam giác cân.
b) Suy ra DE là đường trung trực của đoạn OC.
c) Tính khoảng các OC theo R để tam giác EOC đều.
Lúc đó chứng tỏ D là trọng tâm của tam giác EOC.
2. Cho đường tròn (O) có đường kính AB và hai tiếp tuyến
(a), (b) tại A và B. Một tiếp tuyến khác tạiM cắt (a), (b)
lần lượt tại C và D.
a) Chứng minh rằng: CD = AC +BD
b) Chứng tỏ tam giác COD vuông và đường tròn đường
kính CD tiếp xúc với AB.
c) Với vị trí nào của điểm M thì tổng AC + BD nhỏ
nhất.
d) Chứng minh hệ thức: AB2 = 4.AC.BD
3. Qua điểm P ở bên trong đường tròn (O) ta kẻ hai dây
AB và CD vuông góc và bằng nhau. Mỗi dây bị điểm
P chia thành hai đoạn thẳng dài 3cm và 21cm. Tính
khoảng cách từ O đến mỗi dây và bán kính đường tròn.
4. Cho đường tròn (O;R) và hai tiếp tuyến MA,MB của
đường tròn. Kẻ AD (D nằm giữa O và M) sao cho
M̂AD = 45o.
a) Chứng minh DO.BM = AO.DM
13
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
b) Chứng minh BD là đường phân giác của ÔBM
c) TừM kẻ đường thẳng song song với OB, đường thẳng
này cắt OA tại N . Chứng minh NO = NM .
5. Cho đường tròn (O;R), hai tiếp tuyến MA,MB của
đường tròn, AB cắt OM tại H.
a) Chứng minh AM.BM = MH.MO
b) Đường thẳng OA cắtMB tại N . Chứng minh
OA
ON
=
MB
MN
c) Từ O kẻ OK song song với AM( K Thuộc MB).
Chứng minh OK = MK.
6. Cho nửa đường tròn tâm O đường kính AB = 2R. Vẽ các
tiếp tuyến Ax,By với nửa đường tròn và tia Oz vuông
góc với AB (các tia Ax,By, Cz cùng phía với nửa đường
tròn đối với AB). Gọi E là điểm bất kì của nửa đường
tròn. Qua E vẽ tiếp tuyến với nửa đường tròn, cắt tia
Ax,By,Oz theo thứ tự tại C,D,M . Chứng minh rằng
khi điểm E thay đổi vị trí trên nửa đường tròn thì:
a) Tích AC.BD không đổi.
b) Tứ giác ACDB có diện tích nhỏ nhất khi nó là hình
chữ nhật. Tính diện tích nhỏ nhất đó.
7. Cho hình thang vuông ABCD (Â = D̂ = 90o), tia phân
giác của góc C đi qua trung điểm I của AD.
a) Chứng minh rằng BC là tiếp tuyến của đường tròn
(I; IA).
b) Cho AD = 2a. Tính tích của AB và CD theo a.
c) Gọi H là tiếp điểm của BC với đường tròn (I) nói
trên. K là giao điểm của AC và BD. Chứng minh rằng
KH song song với DC.
14
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
8. Cho tam giác ABC vuông tại A, đường cao AH,BH =
20cm,HC = 45cm. Vẽ đường tròn tâm A bán kính AH.
Kẻ tiếp tuyến BM,CN với đường tròn (M và N là các
tiếp điểm, khác điểm H).
a) Tính diện tích tứ giác BMNC.
b) Gọi K là giao điểm của CN và HA. Tính các độ dài
AK,KN .
c) Gọi I là giao điểm của AM và CB. Tính các độ dài
IM, IB
9. Trên một đường thẳng d cho hai điểm A,B. Các tia
Ax,By nằm trong nửa mặt phẳng bờ là đường thẳng d
và cung vuông góc với d. Trên Ax lấy một điểm C và trên
By lấy một điểmD thỏa mãn hệ thức: AB2 = 4.AC.BD.
Vẽ các đường tròn tâm C và D theo thứ tự tiếp xúc với
d tại các điểm A và B. Chứng minh rằng hai đường tròn
này tiếp xúc với nhau.
10. Cho nửa đường tròn tâm O có đường kính AB. Trên tiếp
tuyến Ax của (O) ta lấy điểm C và trên tiếp tuyến By
của (O) ta lấy điểm D sao cho AC +BD = CD. Chứng
rằng CD tiếp xúc (O).
11. Cho tam giác ABC có đường tròn nội tiếp (I; r) tiếp
xúc với các cạnh BC,CA,AB lần lượt tại D,E, F . Đặt
BC = a, CA = b, AB = c, p là nửa chu vi tam giác.Chứng
minh rằng:
a) Diện tích của tam giác ABClà S = pr
b) AE = AF = p− a;BD = BF = p− b;CD = CE =
p− c
12. Cho đường trònh (O) có đường kính AB. Tiếp tuyến tại
điểm M thuộc (O) cắt hai tiếp tuyến tại A và B của
15
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
(O) lần lượt tại B vàC. Vẽ đường tròn (I) có đưo27ng
kính CD. Chứng minh rằng AB tiếp xúc với (I) tại O.
13. Trên tiếp tuyến tại A thuộc (O;R) lấy đoạn IA = R
√
3
a) Tính độ dài OI theo R và số đo các góc của tam giác
AOI
b) Kéo dài đường cao AH của tam giác AOI cắt (O) tại
B, chứng tỏ IA = IB và IB cũng là tiếp tuyến của (O)
c) Chứng tỏ tam giác AIB đều.
14. Cho góc x̂Oy = 60o. Một đường tròn tâm I bán kính
R = 5cm tiếp xúc với Ox tại A, tiếp xúc với Oy tại B.
Từ điểm M thuộc cung nhỏ AB vẽ tiếp tuyến thứ ba,
nó cắt Ox tại E, Oy tại F .
a) Tính chu vi tam giác OEF , chứng minh rằng chu vi
đó không đổi khi M thay đổi trên cung nhỏ AB.
b) Chứng minh rằng ÊOF có số đo không đổi khi M
chạy trên cung nhỏ AB.
15. Cho tam giác ABC vuông tại A, đường cao AH. Đường
tròn tâm I, đường kính BH cắt AB tại E, đường tròn
tâm J đường kính CH cắt AC tại F . Chứng minh rằng:
a) AH là tiếp tuyến chung của hai đường tròn (I) và (J)
tại H
b) EF là tiếp tuyến của (I) tại E, tiếp tuyến của (J)
tại F .
16. Cho tam giác ABC cân tại A. Đường cao AH và BK
cắt nhau tại I. Chứng minh:
a) Đường tròn đường kính AI đi qua K.
b) KH là tiếp tuyến của đường tròn đường kính AI.
17. Cho nửa đường tròn tâm O đường kính AB. Lấy điểm
16
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
D trên bán kính OB. Gọi H là trung điểm của AD.
Đường vuông góc tại H với AB cắt nửa đường tròn tại
C. Đường tròn tâm I đường kính BD cắt tiếp tuyến CB
tại E.
a) Tứ giác AECD là hình gì?
b) Chứng minh tam giác HCE cân tại H.
c) Chứng minh HE là tiếp tuyến của đường tròn tâm I.
18. Cho nửa đường tròn đường kínhAB. Từ A và B vẽ hai
tiếp tuyến Ax,By với nửa đường tròn. Lấy M là một
điểm tùy ý trên nửa đường tròn, vẽ tiếp tuyến qua M ,
nó cắt Ax tại C, cắt By tại D. Gọi A′ là giao điểm BM
với Ax, B′ là giao điểm AM vớiBy. Chứng minh:
a) 4A′AB và 4ABB′ đồng dạng, suy ra AA′.BB′ =
AB2.
b) CA = CA′, DB = DB′
c) Ba đường thẳng B′A′, DC,AB đồng qui.
19. Ba đường tròn nằm trong tam giác ABC có cùng bán
kính a, cùng đi qua một điểm sao cho cứ hai đường tròn
lấy theo đôi một thì cùng tiếp xúc với một cạnh của
tam giác ABC. Gọi R là bán kính đường tròn ngoại tiếp
4ABC. Tính bán kính r của đường tròn nội tiếp4ABC
theo R và a.
20. Cho đường tròn bán kính r nội tiếp4ABC, tiếp xúc với
cạnh BC tại D, với AC tại E, với AB tại F . Vẽ đường
kính DD′. Cho B̂D′C = 90o, BC = a, CA = b, AB = c.
Tính độ dài AE,AF theo a.
21. Đường tròn nội tiếp tam giác ABC (AB > AC)tiếp xúc
với các cạnh AB,AC lần lượt tại P,Q. Gọi R,S lần
17
Bài tập hình học lớp 9 TTBDVH: Lửa Việt
lượt là trung điểm của các đoạn thẳng BC,CA và T là
giao điểm của PQ và RS. Chứng minh rằng T nằm trên
đường phân giác của góc B.
22. ** Cho tam giác ABC có AB < AC < BC. Trên hai
cạnh AC,BC lấy D,E sao cho AB = AD = AE. Xác
định vị trí tương đối giữa DE và đường tròn nội tiếp
tam giác ABC.
23. Cho đường tròn tâm O đường kính AB. Trên đoạn AB
lấy 1 điểm C. Dựng đường tròn tâm I đường kính BC.
Đường trung trực của AC cắt (O) tại D, DB cắt (I) tại
N . Chứng minh rằng:
a) OD = MI (M là trung điểm của AC)
b) IN = OM
c) 4OMD = 4INM , suy raMN là tiếp tuyến của (I).
24. Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn.
Cát tuyến thay đổi qua A cắt (O) tại hai điểm B,C. Tiếp
tuyến của (O) tại B và C cắt nhau tại D. Chứng minh
rằng D nằm trên một đường thẳng cố định.
25. Cho nửa đường tròn (O) đường kính AB = 2R. C là
một điểm di động trên nửa đường tròn. Tiếp tuyến tại
C cắt AB tại D. Qua O vẽ đường thẳng vuông góc với
tia phân giác trong góc ÔCD, đường thẳng này cắt CD
tại M . Chứng minh rằng M thuộc một đường cố định
khi C di chuyển trên nửa đường tròn.
26. Cho tam giác ABC cân tại A nội tiếp trong đường tròn
(O;R). Điểm M thay đổi trên cạnh BC. Gọi D là tâm
đường tròn qua M tiếp xúc với AB tại B; E là tâm
đường tròn qua M tiếp xúc với AC tại C.
a) Tìm vị trí củaM đểDE có 

Tài liệu đính kèm:

  • pdfBai_tap_nang_cao_hinh_hoc_9_hay_nhat.pdf