CHƯƠNG II HÀM SỐ BẬC NHẤT VÀ BẬC HAI I. HÀM SỐ VẤN ĐỀ 1: Tìm tập xác định của hàm số Tình giá trị của các hàm số sau tại các điểm đã chỉ ra: a) . Tính f(0), f(2), f(–2), f(3). b) . Tính f(2), f(0), f(3), f(–2). c) . Tính f(2), f(–2), f(0), f(1). d) . Tính f(–2), f(0), f(1), f(2) f(3). e) . Tính f(–2), f(–1), f(0), f(2), f(5). Tìm tập xác định của các hàm số sau: a) b) c) d) e) f) g) h) i) Tìm tập xác định của các hàm số sau: a) b) c) d) e) f) g) h) i) Tìm a để hàm số xác định trên tập K đã chỉ ra: a) ; K = R. ĐS: a > 11 b) ; K = R. ĐS: –2 < a < 2 c) ; K = (0; +¥). ĐS: a £ 1 VẤN ĐỀ 2: Xét sự biến thiên của hàm số Xét sự biến thiên của các hàm số sau trên các khoảng đã chỉ ra: a) ; R. b) ; R. c) ; (–¥; 2), (2; +¥). d) ; (–¥; 1), (1; +¥). e) ; (–¥; –1), (–1; +¥). f) ; (–¥; 2), (2; +¥). Với giá trị nào của m thì các hàm số sau đồng biến hoặc nghịch biến trên tập xác định (hoặc trên từng khoảng xác định): a) b) c) d) VẤN ĐỀ 3: Xét tính chẵn lẻ của hàm số Xét tính chẵn lẻ của các hàm số sau: a) b) c) d) e) f) g) h) i) VẤN ĐỀ 4: Tịnh tiến đồ thị Bài 1.Gọi (G) là đồ thị của hàm số y=2|x|, ta được đồ thị hàm số nào khi tịnh tiến (G): a) lên trên 3 đơn vị; b) sang trái 1 đơn vị; c) sang phải 2 đơn vị rồi xuống dưới 1 đơn vị. Bài 2: Gọi (d) là đường thẳng y= 2x=f(x) và (d’) là đường thẳng y= 2x-3. Ta có thể coi (d’) có được là do tịnh tiến (d): a) Lên trên hay xuống dưới bao nhiêu đơn vị? (d’): y=2x-3= f(x)-3 b) Sang trái hay sang phải bao nhiêu đơn vị? (d’): y=2x-3= 2(x-) Bài 3 Cho đồ thị (H) của hàm số y= a) Tịnh tiến (H) lên trên 1 đơn vị, ta được đồ thị của hàm số nào? b) Tịnh tiến (H) sang trái 3 đơn vị, ta được đồ thị hàm số nào? c) Tịnh tiến (H) lên trên 1 đơn vị, sau đó tịnh tiến đồ thị nhận được sang trái 3 đơn vị, ta được đồ thị hàm số nào? Bài 4: Trong mặt phẳng tọa độ, cho các điểm A(-1;3), B(2;-5), C(a;b). Hãy tính tọa độ các điểm có được khi tịnh tiến các điểm đã cho: a) Lên trên 5 đơn vị b) Xuống dưới 3 đơn vị c) Sang phải 1 đơn vị d) Sang trái 4 đơn vị. II. HÀM SỐ BẬC NHẤT Vẽ đồ thị của các hàm số sau: a) b) c) d) Tìm toạ độ giao điểm của các cặp đường thẳng sau: a) b) c) d) Trong mỗi trường hợp sau, tìm giá trị k để đồ thị của hàm số : a) Đi qua gốc tọa độ O b) Đi qua điểm M(–2 ; 3) c) Song song với đường thẳng Xác định a và b để đồ thị của hàm số : a) Đi qua hai điểm A(–1; –20), B(3; 8). b) Đi qua điểm M(4; –3) và song song với đường thẳng d: . c) Cắt đường thẳng d1: tại điểm có hoành độ bằng –2 và cắt đường thẳng d2: tại điểm có tung độ bằng –2. d) Song song với đường thẳng và đi qua giao điểm của hai đường thẳng và . Trong mỗi trường hợp sau, tìm các giá trị của m sao cho ba đường thẳng sau phân biệt và đồng qui: a) b) c) d) e) Tìm điểm sao cho đường thẳng sau luôn đi qua dù m lấy bất cứ giá trị nào: a) b) c) d) e) f) Với giá trị nào của m thì hàm số sau đồng biến? nghịch biến? a) b) c) d) Tìm các cặp đường thẳng song song trong các đường thẳng cho sau đây: a) b) c) d) e) f) Với giá trị nào của m thì đồ thị của các cặp hàm số sau song song với nhau: a) b) c) Vẽ đồ thị của các hàm số sau: a) b) c) d) e) f) g) h) III. HÀM SỐ BẬC HAI Xét sự biến thiên và vẽ đồ thị của các hàm số sau: a) b) c) d) e) f) Tìm toạ độ giao điểm của các cặp đồ thị của các hàm số sau: a) b) c) d) e) f) Xác định parabol (P) biết: a) (P): đi qua điểm A(1; 0) và có trục đối xứng . b) (P): đi qua điểm A(–1; 9) và có trục đối xứng . c) (P): đi qua điểm A(0; 5) và có đỉnh I(3; –4). d) (P): đi qua điểm A(2; –3) và có đỉnh I(1; –4). e) (P): đi qua các điểm A(1; 1), B(–1; –3), O(0; 0). f) (P): đi qua điểm A(1; 0) và đỉnh I có tung độ bằng –1. Chứng minh rằng với mọi m, đồ thị của mỗi hàm số sau luôn cắt trục hoành tại hai điểm phân biệt và đỉnh I của đồ thị luôn chạy trên một đường thẳng cố định: a) b) Vẽ đồ thị của hàm số . Hãy sử dụng đồ thị để biện luận theo tham số m, số điểm chung của parabol và đường thẳng . Vẽ đồ thị của các hàm số sau: a) b) c) d) e) f)
Tài liệu đính kèm: