ĐỀ SỐ 1 ĐỀ THI TUYỂN SINH LỚP 10 THPT MÔN: TOÁN Bài 1: Rút gọn biểu thức: a, A = ( với a > 0; a 1) b, B = (với a > 0; a 1) Bài 2: Cho hệ phương trình: a) Giải hệ phương trình khi m = 2 b) Giải hệ phương trình theo tham số m c) Tìm m để hệ phương trình có nghiệm (x; y) thoả mãn x + y =- 1 d) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m. Bài 3:. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P. Chứng minh rằng: Tứ giác CEHD, nội tiếp . Bốn điểm B,C,E,F cùng nằm trên một đường tròn. AE.AC = AH.AD; AD.BC = BE.AC. H và M đối xứng nhau qua BC. Xác định tâm đường tròn nội tiếp tam giác DEF. Bài 4: Cho: a,b,c là các số thực không âm thỏa mãn: a+b+c = 1. Tìm giá trị lớn nhất của biểu thức: P = ĐỀ SỐ 2 Bài 1: Cho biểu thức: ( với a > 0; a 4) a, Rút gọn biểu thức P b, Tính giá trị biểu thức P khi a = 9 Bài 2: Cho hàm số bậc nhất y = ax + 5 a) Tìm a để đồ thị hàm số đi qua điểm A (-2; 3) b) Vẽ đồ thị hàm số vừa tìm được ở câu a). Bài 3: Cho hệ phương trình: a) Giải hệ phương trình khi m = 3 b) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m. c) Tìm giá trị của m thoả mãn: 2x2 – 7y = 1 d) Tìm các giá trị của m để biểu thức nhận giá trị nguyên. Bài 4: Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE Chứng minh tứ giác CEHD nội tiếp . Bốn điểm A, E, D, B cùng nằm trên một đường tròn. Chứng minh ED = BC. Chứng minh DE là tiếp tuyến của đường tròn (O). Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm. Bài 5: Cho hai số dương x,y thỏa x+y=1. Tìm GTNN của biểu thức ĐỀ SỐ 3 Bài 1: Tính giá trị biểu thức: khi Bài 2: a) Vẽ đồ thị các hàm số y = - x + 2 và y = x + 2 b) Gọi toạ độ giao điểm của đồ thị các hàm số với các trục toạ độ là A và B, giao điểm của đồ thị 2 hàm số trên là E. Tính chu vi và diện tích Bài 3: Cho hệ phương trình: Với giá trị nào của m thì hệ phương trình a) có nghiệm duy nhất. b) có vô số nghiệm. c) vô nghiệm. Bài 4: Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. 1.Chứng minh AC + BD = CD. 2.Chứng minh ÐCOD = 900. 3.Chứng minh AC. BD = . 4.Chứng minh OC // BM 5.Chứng minh AB là tiếp tuyến của đường tròn đường kính CD. 6.Chứng minh MN ^ AB. 7.Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất. Bài 5: Giải phương trình: ĐỀ SỐ 4 Bài 1: Rút gọn biểu thức: ( với x > 0; x9) Bài 2: Cho hàm số a) Tìm điều kiện của m để hàm số luôn luôn nghịch biến. b) Tìm điều kiện của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -3 c) CMR: Đồ thị hàm số luôn luôn đi qua 1 điểm cố định với mọi giá trị của m Bài 3: Trên cùng một dòng sông, một ca nô chạy xuôi dòng 108 km và ngược dòng 63km hết tất cả 7 h. Nếu ca nô xuôi dòng 81km và ngược dòng 84km thì hết 7 h. Tính vận tốc thực của ca nô và vận tốc của dòng nước. Bài 4: Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC ^ MB, BD ^ MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB. 1.Chứng minh tứ giác AMBO nội tiếp. 2.Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn . 3.Chứng minh OI.OM = R2; OI. IM = IA2. 4.Chứng minh OAHB là hình thoi. 5.Chứng minh ba điểm O, H, M thẳng hàng. 6.Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d Bài 5: Giải và biện luận phương trình sau theo tham số m: (m-1)x2 + 2mx + m+1 = 0. Đáp án: Bài 1: Rút gọn biểu thức: a, A = ( với a > 0; a 1) = = = = = Vậy A = b, B = ( với a > 0; a 1) Ta có: B = = = = Vậy Bài 3: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P. Chứng minh rằng: 1.Tứ giác CEHD, nội tiếp . 2.Bốn điểm B,C,E,F cùng nằm trên một đường tròn. 3.AE.AC = AH.AD; AD.BC = BE.AC. 4.H và M đối xứng nhau qua BC. 5.Xác định tâm đường tròn nội tiếp tam giác DEF. Lời giải: Xét tứ giác CEHD ta có: Ð CEH = 900 ( Vì BE là đường cao) Ð CDH = 900 ( Vì AD là đường cao) => Ð CEH + Ð CDH = 1800 Mà Ð CEH và Ð CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp Theo giả thiết: BE là đường cao => BE ^ AC => ÐBEC = 900. CF là đường cao => CF ^ AB => ÐBFC = 900. Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC. Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn. Xét hai tam giác AEH và ADC ta có: Ð AEH = Ð ADC = 900 ; Â là góc chung => D AEH ~ DADC => => AE.AC = AH.AD. * Xét hai tam giác BEC và ADC ta có: Ð BEC = Ð ADC = 900 ; ÐC là góc chung => D BEC ~ DADC => => AD.BC = BE.AC. 4. Ta có ÐC1 = ÐA1 ( vì cùng phụ với góc ABC) ÐC2 = ÐA1 ( vì là hai góc nội tiếp cùng chắn cung BM) => ÐC1 = Ð C2 => CB là tia phân giác của góc HCM; lại có CB ^ HM => D CHM cân tại C => CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC. 5. Theo chứng minh trên bốn điểm B,C,E,F cùng nằm trên một đường tròn => ÐC1 = ÐE1 ( vì là hai góc nội tiếp cùng chắn cung BF) Cũng theo chứng minh trên CEHD là tứ giác nội tiếp ÐC1 = ÐE2 ( vì là hai góc nội tiếp cùng chắn cung HD) ÐE1 = ÐE2 => EB là tia phân giác của góc FED. Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF. Bài 4: Cho: a,b,c là các số thực không âm thỏa mãn: a+b+c = 1. Tìm GTLN của biểu thức: P = Giải: Theo BĐT Bunhiacopxki ta có: Dấu đẳng thức xảy ra ó a=b=c ó Dấu đẳng thức xảy ra ó a=b=c ó Dấu đẳng thức xảy ra ó a=b=c ó Dấu đẳng thức xảy ra ó a=b=c Mà a+b+c=1 nên: Min P = ó a=b=c = Đề 2: Bài 1: Cho biểu thức: ( với a > 0; a 4) a, Rút gọn biểu thức P b, Tính giá trị biểu thức P khi a = 9 Bài 2: Cho hàm số bậc nhất y = ax + 5 a) Tìm a để đồ thị hàm số đi qua điểm A (-2; 3) b) Vẽ đồ thị hàm số vừa tìm được ở câu a). Bài 3: Cho hệ phương trình: a) Giải hệ phương trình khi m = 3 b) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m. c) Tìm giá trị của m thoả mãn: 2x2 – 7y = 1 d) Tìm các giá trị của m để biểu thức nhận giá trị nguyên. Bài 4: Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE Chứng minh tứ giác CEHD nội tiếp . Bốn điểm A, E, D, B cùng nằm trên một đường tròn. Chứng minh ED = BC. Chứng minh DE là tiếp tuyến của đường tròn (O). Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm. Bài 5: Cho hai số dương x,y thỏa x+y=1. Tìm GTNN của biểu thức Đáp án : Bài 1: Cho biểu thức: ( với a > 0; a 4) a, Rút gọn biểu thức P b, Tính giá trị biểu thức P khi a = 9 Giải: a, Ta có: Vậy P = b, Thay a = 9 vào biểu thức P ta được: P = Vậy khi a = 9 thì P = 4. Bài 2: Cho hàm số bậc nhất y = ax + 5 a) Tìm a để đồ thị hàm số đi qua điểm A (-2; 3) b) Vẽ đồ thị hàm số vừa tìm được ở câu a). Giải: a) Để đồ thị hàm số y = ax + 5 đi qua điểm A (-2; 3) 3 = a.(-2) + 5 -2a + 5 = 3 -2a = 3 – 5 -2a = - 2 a = 1 Vậy khi a = 1 thì đồ thị hàm số y = ax + 5 đi qua điểm A (-2; 3) b) Khi a = 1 thì công thức hàm số là: y = x + 5 Cho x = 0 y = 5 A (0; 5) y = 0 x = -5 B (-5; 0) Đồ thị hàm số y = x + 5 là đường thẳng đi qua 2 điểm A (0; 5); B (-5; 0) Bài 3: Cho hệ phương trình: a) Giải hệ phương trình khi m = 3 b) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m. c) Tìm giá trị của m thoả mãn: 2x2 – 7y = 1 d) Tìm các giá trị của m để biểu thức nhận giá trị nguyên. Giải: a) Thay m = 3 vào hệ phương trình ta có hệ phương trình trở thành Vậy với m = 3 thì hệ phương trình có 1 nghiệm duy nhất ( x ; y) = b) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m. Xét hệ phương trình Từ phương trình thay vào phương trình ta có phương trình: Vậy là đẳng thức liên hệ giữa x và y không phụ thuộc vào m. Giải hệ phương trình theo tham số m ta có hpt Vậy hệ phương trình có 1 nghiệm duy nhất (x; y ) = +) Để hệ phương trình có nghiệm (x; y) thoả mãn 2x2 - 7y = 1 Vậy với m = 2 hoặc m = 1 thì hpt trên có nghiệm thoả mãn điều kiện: 2x2 - 7y = 1 Thay ; vào biểu thức A = ta được biểu thức A = = = = = = = Để biểu thức A = nhận giá trị nguyên nhận giá trị nguyên nhận giá trị nguyên (m+2) là ước của 5. Mà Ư(5) = Kết hợp với điều kiện ; Vậy với các giá trị m = -1; m = -3; m = -7; m = 3 thì giá trị của biểu thức nhận giá trị nguyên. Bài 4: Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE 1.Chứng minh tứ giác CEHD nội tiếp . 2.Bốn điểm A, E, D, B cùng nằm trên một đường tròn. 3.Chứng minh ED = BC. 4.Chứng minh DE là tiếp tuyến của đường tròn (O). 5.Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm. Lời giải: 1.Xét tứ giác CEHD ta có: Ð CEH = 900 ( Vì BE là đường cao) Ð CDH = 900 ( Vì AD là đường cao) => Ð CEH + Ð CDH = 1800 Mà Ð CEH và Ð CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp 2. Theo giả thiết: BE là đường cao => BE ^ AC => ÐBEA = 900. AD là đường cao => AD ^ BC => ÐBDA = 900. Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB. Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn. 3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến => D là trung điểm của BC. Theo trên ta có ÐBEC = 900 . Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = BC. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => ÐE1 = ÐA1 (1). Theo trên DE = BC => tam giác DBE cân tại D => ÐE3 = ÐB1 (2) Mà ÐB1 = ÐA1 ( vì cùng phụ với góc ACB) => ÐE1 = ÐE3 => ÐE1 + ÐE2 = ÐE2 + ÐE3 Mà ÐE1 + ÐE2 = ÐBEA = 900 => ÐE2 + ÐE3 = 900 = ÐOED => DE ^ OE tại E. Vậy DE là tiếp tuyến của đường tròn (O) tại E. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ó ED2 = 52 – 32 ó ED = 4cm Bài 5: Cho hai số dương x,y thỏa x+y=1. Tìm GTNN của biểu thức Giải: Ta có: (vì x+y=1 nên: (x+y)2 = 1 ó x2 + y2 -1 = - 2xy) Để N đạt Min thì xy phải có GTLN ⇒Max xy = 1/4 ⇒N≥≥1 + 8 = 9 Vậy Min N = 9 khi x = y = 12 Đề 3: Bài 1: Tính giá trị biểu thức: khi Bài 2: a) Vẽ đồ thị các hàm số y = - x + 2 và y = x + 2 b) Gọi toạ độ giao điểm của đồ thị các hàm số với các trục toạ độ là A và B, giao điểm của đồ thị 2 hàm số trên là E. Tính chu vi và diện tích Bài 3: Cho hệ phương trình: a) Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất. b) Với giá trị nào của m thì hệ phương trình có vô số nghiệm. c) Với giá trị nào của m thì hệ phương trình vô nghiệm. Bài 4: Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. 1.Chứng minh AC + BD = CD. 2.Chứng minh ÐCOD = 900. 3.Chứng minh AC. BD = . 4.Chứng minh OC // BM 5.Chứng minh AB là tiếp tuyến của đường tròn đường kính CD. 6.Chứng minh MN ^ AB. 7.Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất. Bài 5: Giải phương trình: Đáp án 3: Bài 1: Tính giá trị biểu thức: khi Thay vào biểu thức P ta được: Bài 3: Cho hệ phương trình: a) Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất. b) Với giá trị nào của m thì hệ phương trình có vô số nghiệm. c) Với giá trị nào của m thì hệ phương trình vô nghiệm. Giải: a Hệ phương trình có 1 nghiệm duy nhất Vậy với thì hpt có 1 nghiệm duy nhất b) Hệ phương trình vô nghiệm (t/m) Vậy với thì hpt vô nghiệm c) Hệ phương trình có vô số nghiệm Vậy với thì hpt có vô số nghiệm. Bài 4: Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. 1.Chứng minh AC + BD = CD. 2.Chứng minh ÐCOD = 900. 3.Chứng minh AC. BD = . 4.Chứng minh OC // BM 5.Chứng minh AB là tiếp tuyến của đường tròn đường kính CD. 6.Chứng minh MN ^ AB. 7.Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất. Lời giải: 1.Theo tính chất hai tiếp tuyến cắt nhau ta có: CA = CM; DB = DM => AC + BD = CM + DM. Mà CM + DM = CD => AC + BD = CD 2.Theo tính chất hai tiếp tuyến cắt nhau ta có: OC là tia phân giác của góc AOM; OD là tia phân giác của góc BOM, mà ÐAOM và ÐBOM là hai góc kề bù => ÐCOD = 900. 3.Theo trên ÐCOD = 900 nên tam giác COD vuông tại O có OM ^ CD ( OM là tiếp tuyến ). Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có OM2 = CM. DM, Mà OM = R; CA = CM; DB = DM => AC. BD =R2 => AC. BD = . 4.Theo trên ÐCOD = 900 nên OC ^ OD .(1) Theo tính chất hai tiếp tuyến cắt nhau ta có: DB = DM; lại có OM = OB =R => OD là trung trực của BM => BM ^ OD .(2). Từ (1) Và (2) => OC // BM ( Vì cùng vuông góc với OD). 5.Gọi I là trung điểm của CD ta có I là tâm đường tròn ngoại tiếp tam giác COD đường kính CD có IO là bán kính. Theo tính chất tiếp tuyến ta có AC ^ AB; BD ^ AB => AC // BD => tứ giác ACDB là hình thang. Lại có I là trung điểm của CD; O là trung điểm của AB => IO là đường trung bình của hình thang ACDB IO // AC , mà AC ^ AB => IO ^ AB tại O => AB là tiếp tuyến tại O của đường tròn đường kính CD 6. Theo trên AC // BD => , mà CA = CM; DB = DM nên suy ra => MN // BD mà BD ^ AB => MN ^ AB. 7. ( HD): Ta có chu vi tứ giác ACDB = AB + AC + CD + BD mà AC + BD = CD nên suy ra chu vi tứ giác ACDB = AB + 2CD mà AB không đổi nên chu vi tứ giác ACDB nhỏ nhất khi CD nhỏ nhất , mà CD nhỏ nhất khi CD là khoảng cách giữ Ax và By tức là CD vuông góc với Ax và By. Khi đó CD // AB => M phải là trung điểm của cung AB. Bài 5: Giải phương trình: Giải: Theo BĐT Cauchy ta có: ó Dấu = xảy ra ó x = 1; y=2; z=3 Đề 4: Bài 1: Tính giá trị biểu thức: khi Bài 2: a) Vẽ đồ thị các hàm số y = - x + 2 và y = x + 2 b) Gọi toạ độ giao điểm của đồ thị các hàm số với các trục toạ độ là A và B, giao điểm của đồ thị 2 hàm số trên là E. Tính chu vi và diện tích Bài 3: Cho hệ phương trình: a) Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất. b) Với giá trị nào của m thì hệ phương trình có vô số nghiệm. c) Với giá trị nào của m thì hệ phương trình vô nghiệm. Bài 4: Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. 1.Chứng minh AC + BD = CD. 2.Chứng minh ÐCOD = 900. 3.Chứng minh AC. BD = . 4.Chứng minh OC // BM 5.Chứng minh AB là tiếp tuyến của đường tròn đường kính CD. 6.Chứng minh MN ^ AB. 7.Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất. Bài 5: Giải phương trình: Đáp án 4: Bài 1: ( Đề thi vào THPT năm học 2006 - 2007) Rút gọn biểu thức: ( với x > 0; x 1) Giải: Ta có: Vậy biểu thức Q Bài 2: a) Tìm hệ số a của hàm số y = ax + 1 biết rằng khi x = thì y = b) Xác định hệ số b biết đồ thị hàm số y= -2x + b đi qua điểm A ( 2; -3) Giải: Khi x = thì y = ta có: = a.() +1 a.() = -1 a.() = a = = Vậy khi x = và y = thì a = . Vì đồ thị hàm số y= -2x + b đi qua điểm A ( 2; -3) nên ta có: -3 = -2.2 + b - 4 + b = -3 b = 1 Vậy khi b = 1 thì đồ thị hàm số y= -2x + b đi qua điểm A ( 2; -3) . Bài 4: Cho tam giác cân ABC (AB = AC), I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp góc A , O là trung điểm của IK. a.Chứng minh B, C, I, K cùng nằm trên một đường tròn. b.Chứng minh AC là tiếp tuyến của đường tròn (O). c.Tính bán kính đường tròn (O) Biết AB = AC = 20 Cm, BC = 24 Cm. Lời giải: (HD) a. Vì I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp góc A nên BI và BK là hai tia phân giác của hai góc kề bù đỉnh B Do đó BI ^ BK hayÐIBK = 900 Tương tự ta cũng có ÐICK = 900 như vậy B và C cùng nằm trên đường tròn đường kính IK do đó B, C, I, K cùng nằm trên một đường tròn. b.Ta có ÐC1 = ÐC2 (1) ( vì CI là phân giác của góc ACH. ÐC2 + ÐI1 = 900 (2) ( vì ÐIHC = 900 ). ÐI1 = Ð ICO (3) ( vì tam giác OIC cân tại O) Từ (1), (2) , (3) => ÐC1 + ÐICO = 900 hay AC ^ OC. Vậy AC là tiếp tuyến của đường tròn (O). c. Từ giả thiết AB = AC = 20 Cm, BC = 24 Cm => CH = 12 cm. AH2 = AC2 – HC2 => AH = = 16 ( cm) CH2 = AH.OH => OH = = 9 (cm) OC = = 15 (cm) Đề 5: Bài 1: Rút gọn biểu thức: ( với x > 0; x9) Bài 2: Cho hàm số a) Tìm điều kiện của m để hàm số luôn luôn nghịch biến. b) Tìm điều kiện của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -3 c) CMR: Đồ thị hàm số luôn luôn đi qua 1 điểm cố định với mọi giá trị của m Bài 3: Trên cùng một dòng sông, một ca nô chạy xuôi dòng 108 km và ngược dòng 63km hết tất cả 7 h. Nếu ca nô xuôi dòng 81km và ngược dòng 84km thì hết 7 h. Tính vận tốc thực của ca nô và vận tốc của dòng nước. Bài 4: Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC ^ MB, BD ^ MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB. 1.Chứng minh tứ giác AMBO nội tiếp. 2.Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn . 3.Chứng minh OI.OM = R2; OI. IM = IA2. 4.Chứng minh OAHB là hình thoi. 5.Chứng minh ba điểm O, H, M thẳng hàng. 6.Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d Bài 5: Giải và biện luận phương trình sau theo tham số m: (m-1)x2 + 2mx + m+1 = 0. Đáp án 5: Bài 1: Rút gọn biểu thức: ( với x > 0; x9) Giải: Ta có: Vậy A Bài 2: Cho hàm số a) Tìm điều kiện của m để hàm số luôn luôn nghịch biến. b) Tìm điều kiện của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -3 c) CMR: Đồ thị hàm số luôn luôn đi qua 1 điểm cố định với mọi giá trị của m Giải: a) Để hàm số luôn luôn nghịch biến với mọi giá trị của x m +2 < 0 m < -2 Vậy với m < - 2 thì hàm số luôn luôn nghịch biến với mọi giá trị của x. b) Để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -3 x = -3 ; y = 0 Ta có : 0 = (m + 2). + m - 3 -3m – 6 + m - 3 = 0 -2m = 9 m = Vậy với m = thì đồ thị hàm số trên cắt trục hoành tại điểm có hoành độ = – 3. c) Giả sử đồ thị hàm số luôn luôn đi qua 1 điểm cố định M (x0; y0) với mọi giá trị của m y0 = (m + 2).x0 + m – 3 (với m) y0 = m.x0 + 2 x0 +m – 3 (với m) ( m.x0 + m) + (2 x0 – 3 - y0 ) = 0 (với m) m.(x0 + 1) + (2 x0 – 3 - y0 ) = 0 (với m) Vậy đồ thị hàm số luôn luôn đi qua 1 điểm cố định M (x0 = -1; y0 = -5) với mọi giá trị của m Bài 3: Trên cùng một dòng sông, một ca nô chạy xuôi dòng 108 km và ngược dòng 63km hết tất cả 7 h. Nếu ca nô xuôi dòng 81km và ngược dòng 84km thì hết 7 h. Tính vận tốc thực của ca nô và vận tốc của dòng nước. Giải: - Gọi vận tốc thực của ca nô là x (km/h), vận tốc của dòng nước là: y (km/h) ( Điều kiện: x > y > 0) - Thì vận tốc xuôi dòng là: x + y (km/h), vận tốc ngược dòng là: x - y (km/h) - Theo bài ra thời gian xuôi dòng 108km và ngược dòng 63 km hết 7 giờ nên ta có phương trình: (1) - Theo bài ra thời gian xuôi dòng 81 km và ngược dòng 84 km hết 7 giờ nên ta có phương trình: (2) Từ (1) và (2) ta có hệ phương trình: đặt: a = ; b = Ta có hệ phương trình: ( thoả mãn ) Vậy vận tốc thực của ca nô là 24 (km/h), vận tốc của dòng nước là: 3 (km/h) Bài 4: Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC ^ MB,
Tài liệu đính kèm: