Tuyển tập đề thi HSG Toỏn 8 Đề 1 Bài 1: (3đ) Chứng minh rầng: 85 + 211 chia hết cho 17 1919 + 6919 chia hết cho 44 Bài 2: Rút gọn biểu thức: Cho . Tính Bài 3:(3đ) Cho tam giác ABC . Lấy các điểm D,E theo thứ tự thuộc tia đối của các tia BA, CA sao cho BD = CE = BC. Gọi O là giao điểm của BE và CD .Qua O vẽ đường thẳng song song với tia phân giác của góc A, đường thẳmg này cắt AC ở K. Chứng minh rằng AB = CK. Bài 4 (1đ). Tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau (nếu có): M = 4x2 + 4x + 5 đề 2 Câu 1 . Tìm một số có 8 chữ số: thoã mãn 2 điều kiện a và b sau: a) b) Câu 2 . Chứng minh rằng: ( xm + xn + 1 ) chia hết cho x2 + x + 1. khi và chỉ khi ( mn – 2) 3. áp dụng phân tích đa thức thành nhân tử: x7 + x2 + 1. Câu 3 . Giải phương trình: x = ( 1.2 + 2.3 + 3.4 + . . . + 2006.2007). Câu 4 . Cho hình thang ABCD (đáy lớn CD). Gọi O là giao điểm của AC và BD; các đường kẻ từ A và B lần lượt song song với BC và AD cắt các đường chéo BD và AC tương ứng ở F và E. Chứng minh: EF // AB b). AB2 = EF.CD. c) Gọi S1 , S2, S3 và S4 theo thứ tự là diện tích của các tam giác OAB; OCD; OAD Và OBC Chứng minh: S1 . S2 = S3 . S4 . Câu 5 . Tìm giá trị nhỏ nhất: A = x2 - 2xy + 6y2 – 12x + 2y + 45. đề 3 Câu 1: a. Rút gọn biểu thức: A= (2+1)(22+1)(24+1).......( 2256 + 1) + 1 b. Nếu x2=y2 + z2 Chứng minh rằng: (5x – 3y + 4z)( 5x –3y –4z) = (3x –5y)2 Câu 2: a. Cho (1) và (2) Tính giá trị của biểu thức A= b. Biết a + b + c = 0 Tính : B = Câu 3: Tìm x , biết : (1) Câu 4: Cho hình vuông ABCD, M ẻ đương chéo AC. Gọi E,F theo thứ tự là hình chiếu của M trên AD, CD. Chứng minh rằng: a.BM ^ EF b. Các đường thẳng BM, EF, CE đồng quy. Câu 5: Cho a,b, c, là các số dương. Tìm giá trị nhỏ nhất của P= (a+ b+ c) ().đề 4 Bài 1 (3đ): 1) Phân tích các đa thức sau thành nhân tử: a) x2 + 7x + 12 b) a10 + a5 + 1 2) Giải phương trình: Bài 2 (2đ): Tìm giá trị nguyên của x để biểu thức có giá trị nguyên Bài 3 (4đ): Cho tam giác ABC ( AB > AC ) 1) Kẻ đường cao BM; CN của tam giác. Chứng minh rằng: a) đồng dạng b) góc AMN bằng góc ABC 2) Trên cạnh AB lấy điểm K sao cho BK = AC. Gọi E là trung điểm của BC; F là trung điểm của AK. Chứng minh rằng: EF song song với tia phân giác Ax của góc BAC. Bài 4 (1đ): Tìm giá trị nhỏ nhất của biểu thức: , ( x khác 0) đề 5 Câu 1 ( 3 điểm ) . Cho biểu thức A = a, Tìm điều kiện của x để A xác định . b, Rút gọn biểu thức A . c, Tìm giá trị của x để A > O Câu 2 ( 1,5 điểm ) .Giải phơng trình sau : Câu 3 ( 3,5 điểm): Cho hình vuông ABCD. Qua A kẽ hai đờng thẳng vuông góc với nhau lần lợt cắt BC tai P và R, cắt CD tại Q và S. 1, Chứng minh AQR và APS là các tam giác cân. 2, QR cắt PS tại H; M, N là trung điểm của QR và PS . Chứng minh tứ giác AMHN là hình chữ nhật. 3, Chứng minh P là trực tâm SQR. 4, MN là trung trực của AC. 5, Chứng minh bốn điểm M, B, N, D thẳng hàng. Câu 4 ( 1 điểm): Cho biểu thức A = . Tìm giá trị nguyên của x để A nhận giá trị nguyên Câu 5 ( 1 điểm) a, Chứng minh rằng b, Cho Tính đề 6 Bài 1 : (2 điểm) Cho biểu thức : M = a) Rút gọn b) Tìm giá trị bé nhất của M . Bài 2 : (2 điểm) Tìm giá trị nguyên của x để A có giá trị nguyên A = Bài 3 : 2 điểm Giải phương trình : x2 - 2005x - 2006 = 0 + + = 9 Bài 4 : (3đ) Cho hình vuông ABCD . Gọi E là 1 điểm trên cạnh BC . Qua E kẻ tia Ax vuông góc với AE . Ax cắt CD tại F . Trung tuyến AI của tam giác AEF cắt CD ở K . Đường thẳng qua E song song với AB cắt AI ở G . Chứng minh : AE = AF và tứ giác EGKF là hình thoi . AEF ~ CAF và AF2 = FK.FC Khi E thay đổi trên BC chứng minh : EK = BE + DK và chu vi tam giác EKC không đổi . Bài 5 : (1đ) Chứng minh : B = n4 - 14n3 + 71n2 -154n + 120 chia hết cho 24 đề 7 Bài1( 2.5 điểm) a, Cho a + b +c = 0. Chứng minh rằng a3 +a2c – abc + b2c + b3 = 0 b, Phân tích đa thức thành nhân tử: A = bc(a+d)(b-c) –ac ( b+d) ( a-c) + ab ( c+d) ( a-b) Bài 2: ( 1,5 điểm). Cho biểu thức: y = ; ( x>0) Tìm x để biểu thức đạt giá trị lớn nhất. Tìm giá trị đó Bài 3: (2 ,5 điểm) a, Tìm tất cả các số nguyên x thoả mãn phương trình: : ( 12x – 1 ) ( 6x – 1 ) ( 4x – 1 ) ( 3x – 1 ) = 330. B, Giải bất phương trình: 3 Bài 4: ( 3 ,5 điểm) Cho góc xoy và điểm I nằm trong góc đó. Kẻ IC vuông góc với ox ; ID vuông góc với oy . Biết IC = ID = a. Đường thẳng kẻ qua I cắt õ ở A cắt oy ở b. A, Chứng minh rằng tích AC . DB không đổi khi đường thẳng qua I thay đổi. B, Chứng minh rằng C, Biết SAOB = . Tính CA ; DB theo a. đề 8 Bài 1( 2 điểm). Cho biểu thức : 1.Rút gọn P. 2.Tìm các cặp số (x;y) Z sao cho giá trị của P = 3. Bài 2(2 điểm). Giải phương trình: Bài 3( 2 điểm). Tìm giá trị lớn nhất của biẻu thức: Bài 4 (3 điểm). Cho hình vuông ABCD có cạnh bằng a. Gọi E; F lần lượt là trung điểm của các cạnh AB, BC. M là giao điểm của CE và DF. 1.Chứng minh CE vuông góc với DF. 2.Chứng minh MAD cân. 3.Tính diện tích MDC theo a. Bài 5(1 điểm). Cho các số a; b; c thoả mãn : a + b + c = . Chứng minh rằng : a2 + b2 + c2 . đề 9 Câu 1. (1,5đ) Rút gọn biểu thức : A = +++..+ Câu 2. (1,5đ) Tìm các số a, b, c sao cho : Đa thức x4 + ax + b chia hết cho (x2 - 4) Câu 3 . (2đ) Tìm các giá trị nguyên của x để biểu thức có giá trị nguyên. Câu 4. Cho a,b,c là độ dài ba cạnh của một tam giác . Chứng minh rằng: a2 + b2 + c2 < 2 (ab + ac + bc) Câu 5 . Chứng minh rằng trong một tam giác , trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp tam giác là O. Thì H,G,O thẳng hàng thức: A= a, Tìm giá trị của biểu thức A xác định. b, Tìm giá trị của biểu thức A có giá trị bằng 0. c, Tìm giá trị nguyên của x để A có giá trị nguyên. Câu 2: .a, Tìm giá trị nhỏ nhất của biểu thức : A= với x>0. .b, Giải phương trình:ữ x+1ữ+:ữ 2x-1ữ+2x =3 Câu3 : Cho tứ giác ABCD có diện tích S. Gọi K,L,M,N lần lượt là các điểm thuộc các cạnh AB,BC,CA,AD sao cho AK/ AB = BL / BC =CM/CD =DN/DA= x. .a, Xác định vị trí các điểm K,L,M,N sao cho tứ giác MNKL có diện tích mhỏ nhất. .b, Tứ giác MNKL ở câu a là hình gì? cần thêm điều kiện gì thì tứ giác MNKL là hình chữ nhật. Câu 4: Tìm dư của phép chia đa thức x99+ x55+x11+x+ 7 cho x2-1 đề 10 Bài 1: (3đ) Cho phân thức : M = a) Tìm tập xác định của M b) Tìm các giá trị của x để M = 0 c) Rút gọn M Bài 2: (2đ) a) Tìm 3 số tự nhiên liên tiếp biết rằng nếu cộng ba tích của hai trong ba số ấy ta được 242. b) Tìm số nguyên n để giá trị của biểu thức A chia hết cho giá trị của biểu thức B. A = n3 + 2n2 - 3n + 2 ; B = n2 -n Bài 3: (2đ) a) Cho 3 số x,y,z Thoã mãn x.y.z = 1. Tính biểu thức M = b) Cho a,b,c là độ dài 3 cạnh của một tam giác Chứng minh rằng: Bài 4: (3đ) Cho tam giác ABC, ba đường phân giác AN, BM, CP cắt nhau tại O. Ba cạnh AB, BC, CA tỉ lệ với 4,7,5 a) Tính NC biết BC = 18 cm b) Tính AC biết MC - MA = 3cm c) Chứng minh đề 11 Câu 1: ( 2,5 điểm) Phân tích đa thức thành nhân tử: a/. x2 – x – 6 (1 điểm) b/. x3 – x2 – 14x + 24 (1,5 điểm) Câu 2: ( 1 điểm) Tìm GTNN của : x2 + x + 1 Câu 3: ( 1 điểm) Chứng minh rằng: (n5 – 5n3 + 4n) 120 với m, n Z. Câu 4: ( 1,5 điểm) Cho a > b > 0 so sánh 2 số x , y với : x = ; y = Câu 5: ( 1,5 điểm) Giải phương trình: + + = 14 Câu 6: ( 2,5 điểm) Trên cạnh AB ở phía trong hình vuông ABCD dựng tam giác AFB cân , đỉnh F có góc đáy là 150 . Chứng minh tam giác CFD là tam giác đều.
Tài liệu đính kèm: