TỔNG ÔN HÌNH HỌC 10 – VECTOR THẦY LÂM PHONG (SÀI GÒN – 0933524179) ĐĂNG KÝ LỚP OFF TẠI 106/G26 LẠC LONG QUÂN P3 Q11 1 TỔNG ÔN TRẮC NGHIỆM VỀ VECTƠ – HÌNH HỌC 10 Sưu tầm và biên soạn: Thầy Hứa Lâm Phong LỊCH HỌC LỚP TOÁN 10 - THẦY PHONG Vấn đề 1: Nhận biết và xác định Vectơ, hai vectơ cùng phương, hai vectơ bằng nhau. Câu 1. Khẳng định nào sau đây là đúng ? A. Giá của vectơ AB là đoạn thẳng đi qua hai điểm A và B. B. Mỗi vectơ đều có duy nhất một giá của nó. C. Hai vectơ bằng nhau là hai vectơ có cùng phương và cùng độ dài. D. Vectơ là một đoạn thẳng có định hướng. Câu 2. Hai vectơ được gọi là bằng nhau nếu : A. Chúng có độ dài bằng nhau và cùng phương . B. Chúng có độ dài bằng nhau và cùng hướng. C. Chúng có độ dài bằng nhau. D. Chúng có độ dài bằng nhau và ngược hướng. Câu 3. Khẳng định nào sau đây sai? A. Hai vector bằng nhau thì chúng cùng hướng và có cùng độ dài bằng nhau. B. Hai vector cùng hướng thì chúng cùng phương. C. Vector không cùng phương với mọi vector khác không. D. Hai vector có cùng phương thì cùng nằm trên cùng một đường thẳng. Câu 4. Mệnh đề nào sau đây là đúng ? A. Hai vectơ cùng phương với một vectơ thứ ba thì cùng phương. B. Hai vectơ cùng phương với một vectơ thứ ba khác 0 thì cùng phương. C. Hai vectơ cùng phương với một vectơ thứ ba thì cùng hướng. D. Hai vectơ ngược hướng với một vectơ thứ ba thì cùng hướng. Câu 5. Véctơ có điểm đầu và điểm cuối trùng nhau được gọi là A. vectơ không và kí hiệu 0 . B. vectơ có phương tùy ý. C. vectơ có độ dài không xác định. D. vectơ suy biến. Cho các vectơ a,b,u,v,w,x, y,z thỏa mãn hình 1 sau. T2 T3 T4 T5 T6 T7 CN 19H30 – 21h15 10A1 10A1 10A1 TỔNG ÔN HÌNH HỌC 10 – VECTOR THẦY LÂM PHONG (SÀI GÒN – 0933524179) ĐĂNG KÝ LỚP OFF TẠI 106/G26 LẠC LONG QUÂN P3 Q11 2 Câu 6. Trong hình 1, vectơ x cùng hướng với vectơ nào sau đây ? A. y, z . B. y,w . C. w,z . D. b,u . Câu 7. Trong hình 1, có bao nhiêu cặp vectơ bằng nhau ? A. 0 . B. 2 . C. 1 . D. 3. Câu 8. Dựa vào hình 1, có bao nhiêu cặp vectơ ngược hướng ? A. 1. B. 2. C. 3 . D. 4. Câu 9. Dựa vào hình 1, có bao nhiêu cặp vectơ cùng hướng ? A. 1. B. 2. C. 3 . D. 4. Câu 10. Dựa vào hình 1, cặp vectơ nào sau đây có cùng giá ? A. a và b . B. u và v . C. x và w . D. y và z . Câu 11. Dựa vào hình 1, tìm khẳng định đúng ? A. b a 2 . B. u v . C. x z 4 3 . D. w y 5 3 . Câu 12. Dựa vào hình 1, tìm khẳng định sai ? A. x y . B. y z 3 4 . C. u v . D. z w 4 5 . Câu 13. Mệnh đề nào sau đây là đúng ? A. Có duy nhất một vectơ cùng phương với mọi vectơ. B. Có ít nhất hai vectơ cùng phương với mọi vectơ. C. Có vô số vectơ cùng phương với mọi vectơ. D. Không có vectơ nào cùng phương với mọi vectơ. Câu 14. Chọn khẳng định sai. Nếu hai vectơ khác 0 bằng nhau thì chúng luôn có đặc điểm là A. cùng điểm gốc . B. cùng phương. C. cùng hướng . D. cùng độ dài. Câu 15. Cho tam giác ABC, có thể xác định bao nhiêu vectơ khác vectơ 0 có điểm đầu và điểm cuối là đỉnh A, B, C ? A. 3 B. 6 C. 4 D. 9 Câu 16. Cho tứ giác ABCD. Số các vectơ khác 0 có điểm đầu và cuối là đỉnh của tứ giác bằng: A. 4 B. 6 C. 8 D. 12 Câu 17. Cho lục giác đều ABCDEF tâm O. Số các vectơ khác 0 cùng phương với OC có điểm đầu và cuối là đỉnh của lục giác là: A. 4 B. 6 C. 7 D. 9 Câu 18. Cho lục giác đều ABCDEF tâm O. Ba vectơ bằng vecto BA là: A. OF,DE,OC B. CA,OF,DE C. OF,DE,CO D. OF,ED,OC Câu 19. Cho lục giác đều ABCDEF tâm O. Số các vectơ bằng OC có điểm đầu và cuối là đỉnh của lục giác là: A. 4 B. 6 C. 2 D. 3 Câu 20. Cho 5 điểm A, B, C, D, E. Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là hai điểm trong các điểm đó? A. 24. B. 30. C. 20 D. 10 Câu 21. Cho hình bình hành ABCD có tâm O. Số vectơ hình thành từ 2 điểm phân biệt trong 5 điểm A, B, C, D, O có độ dài bằng OB là A. 4. B. 3. C. 2 D. 6 TỔNG ÔN HÌNH HỌC 10 – VECTOR THẦY LÂM PHONG (SÀI GÒN – 0933524179) ĐĂNG KÝ LỚP OFF TẠI 106/G26 LẠC LONG QUÂN P3 Q11 3 Câu 22. Cho AB ≠ 0 và một điểm C, có bao nhiêu điểm D thỏa mãn: AB CD A. 0 B. 1 C. 2 D. vô số. Câu 23. Cho AB ≠ 0 và một điểm C, có bao nhiêu điểm D thỏa mãn: AB CD A. 0 B. 1 C. 2 D. vô số. Câu 24. Cho hình bình hành ABCD. Trong các khẳng định sau, hãy tìm khẳng định sai. A. AD CB . B. AD CB . C. AB DC D. AB CD Câu 25. Cho hình vuông ABCD. Trong các khẳng định sau, hãy tìm khẳng định đúng. A. AC BD . B. AB,AC cùng hướng. C. AB BC D. AB CD . Câu 26. Cho hình thoi ABCD. Trong các khẳng định sau, hãy tìm khẳng định đúng. A. BA DC . B. AB AD . C. BD AC D. AB CD . Câu 27. Cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm AB, BC, CD, DA . Khẳng định nào sau đây là sai ? A. MN QP . B. MQ NP . C. PQ MN D. MN AC . Câu 28. Điều kiện nào là điều kiện cần và đủ để AB CD : A. ABCD là hình bình hành. B. ABDC là hình bình hành. C. AD và BC có cùng trung điểm. D. AB CD và AB / /CD . Câu 29. Cho ABC. Đặt a BC,b AC . Các cặp vectơ nào sau cùng phương? A. a b,a b 2 2 . B. a b, a b 2 2 . C. a b, a b 5 10 2 D. a b,a b Câu 30. Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA và AB. Các vectơ bằng với CM là A. MB,PN,CN . B. BM,NC,NP . C. BM,PN,NC D. MB,NP,CM Câu 31. Cho điểm M thuộc đoạn thẳng AB sao cho MA MB3 2 . Khi đó ta có : A. MA AB 2 5 . B. MA MB 2 3 . C. MA AB 3 5 D. MA AB 2 5 Câu 32. Cho tam giác ABC, gọi N là điểm trên cạnh AC sao cho NC NA 2 . Biểu diễn NA theo AC A. NA AC 2 3 . B. NA AC 1 3 . C. NA AC D. NA AC 2 Câu 33. Cho tam giác ABC, gọi M là điểm trên cạnh BC sao cho MB MC 2 . Biểu diễn AM AB 1 3 theo AC A. AC 2 3 . B. NA AC 1 3 . C. 0 D. AC2 Câu 34. Cho ba điểm A, B, C phân biệt. Điều kiện cần và đủ để ba điểm thẳng hàng là: A. AC AB BC B. M : MA MC MB C. k : AB kAC D. M : MA MB MC 0 Câu 35. Cho ba điểm M, N, P thẳng hàng, trong đó điểm N nằm giữa hai điểm M và P. Khi đó các cặp vecto nào sau đây cùng hướng ? A. MN và PN B. MN và MP C. MP và PN D. NM và NP TỔNG ÔN HÌNH HỌC 10 – VECTOR THẦY LÂM PHONG (SÀI GÒN – 0933524179) ĐĂNG KÝ LỚP OFF TẠI 106/G26 LẠC LONG QUÂN P3 Q11 4 Câu 36. Cho hai vectơ a và b không cùng phương. Hai vectơ nào sau đây là cùng phương ? A. u a b 2 3 và v a b 1 3 2 B. u a b 3 3 5 và v a b 3 2 5 C. u a b 2 3 3 và v a b 2 9 D. u a b 3 2 2 và v a b 1 1 3 4 Câu 37. Cho hai vectơ a và b không cùng nhưng hai vec tơ a b2 3 và a x b 1 cùng phương. Khi đó giá trị của x là: A. 1 2 B. 3 2 C. 1 2 D. 3 2 Câu 38. Điểm P được xác định: MN PN 4 . Điểm P được xác định đúng trong hình vẽ nào sau đây: H1 H2 H3 H4 A. H4 B. H1 C. H3 D. H2 Câu 39. Điểm P được xác định: NM PM 3 . Điểm P được xác định đúng trong hình vẽ nào sau đây: H1 H2 H3 H4 A. H4 B. H1 C. H3 D. H2 Câu 40. Cho 3 điểm M, N, P thẳng hàng thỏa mãn hình vẽ sau: Khẳng định nào sau đây là đúng ? A. MP MN 2 B. PN MN 3 C. NM PM 1 2 D. MN PN 1 3 Câu 41. Cho tam giác ABC nội tiếp đường tròn tâm O có trực tâm H. D là điểm đối xứng với B qua O. Tìm khẳng định đúng trong các khẳng định sau. A. HA CD và AD CH . B. HA CD và AD HC C. HA CD và AC CH . D. HC AD và OD OB Câu 42. Cho tam giác ABC nội tiếp đường tròn tâm O có trực tâm H và trọng tâm G. . Tìm khẳng định đúng trong các khẳng định sau. A. 3 điểm O, H, G thẳng hàng vì OH OG 2 . B. 3 điểm O, H, G thẳng hàng vì OH OG 3 . C. 3 điểm O, H, G thẳng hàng vì OH OG 2 . D. 3 điểm O, H, G thẳng hàng vì OH OG 3 2 . Vấn đề 2: Dựng và tính tổng – hiệu của hai vectơ. NPM PN M PMN NPM NPM PN M PMN NPM PN M TỔNG ÔN HÌNH HỌC 10 – VECTOR THẦY LÂM PHONG (SÀI GÒN – 0933524179) ĐĂNG KÝ LỚP OFF TẠI 106/G26 LẠC LONG QUÂN P3 Q11 5 Câu 43. Phát biểu nào sau đây là đúng. A. Hai vectơ không bằng nhau thì có độ dài không bằng nhau. B. Hiệu của 2 vectơ có độ dài bằng nhau là vectơ – không. C. Tổng của hai vectơ khác vectơ –không là 1 vectơ khác vectơ –không. D. Hai vectơ cùng phương với 1 vec tơ khác 0 thì 2 vec tơ đó cùng phương với nhau. Câu 44. Cho hai vecto ,a b khác vectơ 0 , không cùng phương và có độ dài bằng nhau. Khi đó giá của hai vectơ a b và a b : A. Song song. B. Cắt và không vuông góc. C. Trùng nhau. D. Vuông góc với nhau. Câu 45. Cho hai vectơ a và b đều khác 0 . Tìm khẳng định đúng trong các khẳng định sau: A. a b a b a và b cùng phương. B. a b a b a và b cùng hướng. C. a b a b a và b ngược hướng. D. a b a b a và b cùng phương. Câu 46. Cho hai vectơ a và b khác vectơ 0 . Khẳng định nào sau đây sai ? A. a là vectơ đối của b thì a b . B. a và b ngược hướng là điều kiện cần để a là vectơ đối của b . C. a là vectơ đối của b nếu a b . D. a là vectơ đối của b thì a b 0 . Câu 47. Cho 4 điểm bất kỳ A, B, C, D. Đẳng thức nào sau đây là đúng A. OA CA CO B. BC AC AB 0 C. BA OB OA D. OA OB BA Câu 48. Cho v AC DB CD BA . Khẳng định nào sau đây là đúng ? A. v AB . B. v BA . C. v CB D. v 0 Câu 49. Cho ba điểm phân biệt A, B, C . Đẳng thức nào đúng? A. CA BA BC . B. AB AC BC . C. AB CA CB D. AB BC CA Câu 50. Cho hai điểm A và B phân biệt. Điều kiện để I là trung điểm AB là: A. IA IB . B. IA IB . C. IA IB D. AI BI Câu 51. Cho ABC cân tại A, đường cao AH . Câu nào sau đây sai ? A. AB AC . B. HC HB . C. AB AC D. AB AC Câu 52. Cho đường tròn tâm O và hai tiếp tuyến song song với nhau tiếp xúc với (O) tại hai điểm A và B . Câu nào sau đây đúng ? A. OA OB . B. AB OB . C. OA OB D. AB BA Câu 53. Cho ABC đều. Câu nào sau đây đúng ? A. AB BC CA . B. CA AB . C. AB BC CA D. CA BC Câu 54. Cho đường tròn tâm O , và điểm M nằm ngoài đường tròn O, kẻ hai tiếp tuyến MT, MT' (T và T' là hai tiếp điểm) . Câu nào sau đây đúng ? A. MT MT' . B. MT MT' TT" . C. MT MT' D. OT OT' Câu 55. Cho ABC , với M là trung điểm của BC . Tìm câu đúng. A. AM MB BA 0 . B. MA MB AB . C. MA MB MC D. AB AC AM Câu 56. Cho ABC với M, N, P lần lượt là trung điểm của BC, CA, AB . Tìm câu sai. TỔNG ÔN HÌNH HỌC 10 – VECTOR THẦY LÂM PHONG (SÀI GÒN – 0933524179) ĐĂNG KÝ LỚP OFF TẠI 106/G26 LẠC LONG QUÂN P3 Q11 6 A. AB BC AC 0 . B. AP BM CN 0 . C. MN NP PM 0 D. PB MC MP Câu 57. Gọi O là tâm của hình vuông ABCD. Vectơ nào trong các vectơ dưới đây bằng CA ? A. AB BC . B. OA OC . C. BD DA D. DC CB Câu 58. Cho tam giác ABC. Trong các mệnh đề sau, tìm mệnh đề đúng. A. AB BC AC . B. AB BC CA 0 . C. AB BC CA BC . D. AB CA BC . Câu 59. Cho hình bình hành ABCD, O là giao điểm hai đường chéo. Khi đó hãy tính tổng OA OB OC OD . A. 0 . B. AC BD . C. CA BD . D. CA DB . Câu 60. Cho tứ giác ABCD. Trong các mệnh đề sau, tìm mệnh đề đúng. A. AB CD AD CB . B. AB BC CD DA . C. AB BC CD DA . D. AB AD CD CB Câu 61. Cho ABC và một điểm M thoả mãn điều kiện MA MB MC 0 . Trong các mệnh đề sau tìm đề sai : A. MABC là hình bình hành. B. AM AB AC . C. BA BC BM D. MA BC Câu 62. Cho hình bình hành ABCD tâm I . Câu nào sau đây sai ? A. AB AD AC . B. AB BC AI 2 . C. AB CD 0 D. AB AC BC Câu 63. Cho hình bình hành ABCD . Gọi M, N lần lượt là trung điểm của AB, CD. Tổng AM AD bằng : A. NC . B. BN . C. MC D. NA Câu 64. Cho tam giác ABC , I là trung điểm của AB, M là điểm tùy ý. Xét v MA MB MC 2 . Tìm khẳng định đúng. A. v IC 2 . B. v CA CB . C. v CA CB D. v CI Câu 65. Cho tam giácABC có trong tâm G. Gọi M,N,P lần lượt là trung điểm của BC, CA, AB. Chọn khẳng định sai A. GM GN GP 0 . B. AG BG CG 0 . C. AM BN CP 0 . D. GC GP 2 . Câu 66. Cho tam giác ABC, có trung tuyến AM và trọng tâm G. Khẳng định nào sau đây là đúng A. AM GM 3 . B. AM (AB AC) 2 . C. MG (MA MB MC) 3 . D. AG (AB AC) 1 3 . Câu 67. Cho hình bình hành ABCD có O là giao điểm hai đường chéo. Tìm khẳng định đúng: A. AO BO BD B. AO BO CD C. AB AC DA D. AO AC BO Câu 68. Cho bốn điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của các đoạn thẳng AB và CD. Trong các đẳng thức sau đẳng thức nào sai ? A. AC BD IJ 2 B. AB CD IJ 2 C. AD BC IJ 2 D. IJ DB CA 2 0 Câu 69. Cho ABC. Gọi I là trung điểm của BC, H là điểm đối xứng của I qua C. AH bằng: A. AH AC AI B. AH AC AI 2 C. AH AC AB 2 D. AH AB AC AI Câu 70. Cho hai vectơ a và b bất kì. Mệnh đề nào sau đây đúng ? TỔNG ÔN HÌNH HỌC 10 – VECTOR THẦY LÂM PHONG (SÀI GÒN – 0933524179) ĐĂNG KÝ LỚP OFF TẠI 106/G26 LẠC LONG QUÂN P3 Q11 7 A. a b a b B. a b a b C. a b a b D. a b a b Vấn đề 3: Tích vectơ với một số thực. Câu 71. Cho ABC có G là trọng tâm, I là trung điểm BC. Đẳng thức nào đúng? A. GA GI 2 . B. IG IA 1 3 . C. GB GC GI 2 D. GB GC GA Câu 72. Cho ABC có trọng tâm G và M là trung điểm BC. Khẳng định nào sau đây là sai ? A. AG AM 2 3 . B. AB AC AG 3 . C. GA BG CG D. GB GC GM Câu 73. Cho hình bình hành ABCD. Đẳng thức nào đúng? A. AC BD BC 2 . B. AC BC AB . C. AC BD CD 2 D. AC AD CD Câu 74. Cho ABC vuông tại A với M là trung điểm của BC. Câu nào sau đây đúng ? A. AM MB MC . B. MB MC . C. MB MC D. BC AM 2 Câu 75. Cho ABC . Gọi M và N lần lượt là trung điểm của AB và AC. Trong các mệnh đề sau tìm mệnh đề sai. A. AB AM 2 . B. AC NC 2 . C. BC MN 2 D. CN AC 1 2 Câu 76. Cho hình vuông ABCD có tâm là O. Trong các mệnh đề sau, tìm mệnh đề sai. A. AB AD AO 2 . B. AD DO CA 1 2 . C. OA OB CB 1 2 D. AC DB AB 4 Câu 77. Cho tam giác ABC, có bao nhiêu điểm M thoả mãn : MA MB MC 1 A. 0. B. 1. C. 2 D. vô số. Câu 78. Cho hình bình hành ABCD, có M là giao điểm của hai đường chéo. Trong các mệnh đề sau, tìm mệnh đề sai: A. AB BC AC . B. AB AD AC . C. BA BC BM 2 D. MA MB MC MD Câu 79. Cho G là trọng tâm của ABC . Trong các mệnh đề sau, tìm mệnh đề đúng : A. AB BC AG 2 3 . B. BA BC BG 3 . C. CA CB CG D. AB AC BC 0 Câu 80. Cho tam giác ABC điểm I thoả: IA IB 2 . Chọn mệnh đề đúng. A. CA CB CI 2 3 . B. CA CB CI 2 3 . C. CI CA CB 2 D. CA CB CI 2 3 Câu 81. Nhân vectơ a khác 0 với số thực 3 ta được một vectơ : A. Cùng hướng với a . B. Không cùng phương với a . C. Có độ dài gấp 3 lần độ dài vectơ a . D. Có độ dài bằng độ dài vectơ a . Vấn đề 4: Tính độ dài của vectơ theo một cạnh cho trước. Câu 82. Cho hình chữ nhật ABCD có AB , BC 3 4 . Độ dài của AC là: A. 5. B. 6. C. 7 . D. 9. Câu 83. Cho hình bình hành ABCDi có AD , AB ,BD 2 4 5 . Tính độ dài BA DA A. 3. B. 4. C. 5. D. 6. TỔNG ÔN HÌNH HỌC 10 – VECTOR THẦY LÂM PHONG (SÀI GÒN – 0933524179) ĐĂNG KÝ LỚP OFF TẠI 106/G26 LẠC LONG QUÂN P3 Q11 8 Câu 84. Cho hai vectơ a và b có giá vuông góc với nhau và a , a b 4 5 . Tính độ dài b A. 1. B. 9. C. 3. D. 41 . Câu 85. Cho tam giác ABC đều có cạnh bằng a . Độ dài của AB AC bằng A. a2 . B. a . C. a 3 D. a 3 2 Câu 86. Cho tam giác ABC vuông cân tại A có AB AC a . Độ dài của AB AC bằng A. a 2 . B. a 2 2 . C. a2 D. a Câu 87. Cho tam giác ABC vuông cân tại A có AB , AC 3 4 . Độ dài của CB AB bằng A. 2 . B. 2 13 . C. 4 D. 13 Câu 88. Cho tam giác ABC đều cạnh là a . Tính AB CA bằng : A. 0 . B. a2 . C. a 3 2 D. a 3 Câu 89. Cho tam giác ABC đều cạnh là a , H là trung điểm của cạnh BC. Tính CA HC bằng : A. a 2 . B. a3 2 . C. a2 3 3 D. a 7 2 Câu 90. Cho tam giác ABC vuông tại A có AB ,AC 3 4 . Tính AB AC bằng : A. 1 . B. 5 . C. 7 D. 7 Câu 91. Cho tam giác ABC vuông tại C có BC a,AC a 3 . Tính CA CB bằng : A. a2 . B. a . C. a 1 3 D. a24 Câu 92. Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC 12 . Tính GB GC . A. 2 . B. 2 3 . C. 8 D. 4 Câu 93. Cho hình vuông ABCD cạnh a. Tính AB AC theo a. A. a . B. a2 . C. 0 D. a 2 Câu 94. Cho hai lực F F N 1 2 100 có điểm đặt tại O và tạo với nhau một góc 060 . Cường độ lực tổng hợp của hai lực ấy bằng bao nhiêu ? A. N100 3 . B. N50 3 . C. N100 . D. N200 . Câu 95. Cho hai lực F N, F N 1 230 40 có điểm đặt tại O và tạo với nhau một góc 090 . Cường độ lực tổng hợp của hai lực ấy bằng bao nhiêu ? A. N10 . B. N70 . C. N50 . D. N35 . Câu 96. Cho hai lực F F N 1 2 200 có điểm đặt tại O và tạo với nhau một góc 0120 . Cường độ lực tổng hợp của hai lực ấy bằng bao nhiêu ? A. N400 . B. N200 . C. N200 3 . D. N100 2 . TỔNG ÔN HÌNH HỌC 10 – VECTOR THẦY LÂM PHONG (SÀI GÒN – 0933524179) ĐĂNG KÝ LỚP OFF TẠI 106/G26 LẠC LONG QUÂN P3 Q11 9 Câu 97. Cho hai lực F N, F N 1 2100 150 . Cường độ lực tổng hợp của hai lực có thể là giá trị nào trong các giá trị sau đây ? A. N40 . B. N270 . C. N170 . D. N30 . Câu 98. Cho hai lực F N, F N 1 230 80 có điểm đặt tại O . Cường độ lực tổng hợp của hai lực không thể là giá trị nào trong các giá trị sau đây ? A. N40 . B. N110 . C. N70 . D. N50 . Câu 99. Cho ba lực F MA,F MB,F MC 1 2 3 cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của F ,F1 2 đều bằng 25 N và góc AMB 060 . Khi đó cường độ lực của 3F là: A. N25 3 B. N50 3 C. N50 2 D. N100 3 Câu 100. Cho hình chữ nhật ABCD tâm O, AB a,AD a 12 5 . Tính AD AO theo a A. a13 . B. a6 . C. a13 2 D. a3 Câu 101. Cho hình thang ABCD (AB // CD) có cạnh AB a,CD a 3 6 . Tính AB CD theo a A. a3 . B. a9 . C. 0 D. a6 Câu 102. Cho tam giác đều ABC cạnh 2a. Gọi G là trọng tâm. Khi đó giá trị AB GC là: A. a 3 3 B. a2 3 3 C. a4 3 3 D. a2 3 Câu 103. Cho hình thang ABCD có AB song song CD. Cho AB a,CD a 2 . Gọi O là trung điểm của AD. Tính OB OC A. a3 2 B. a C. a2 D. a3 Câu 104. Cho tam giác OAB vuông cân tại O và OA a . Độ dài của u OA OB 21 5 4 2 là A. a 321 4 B. a 520 4 C. a 541 4 D. a41 4 Câu 105. Cho tam giác OAB vuông cân tại O và OA a . Độ dài của v OA OB 11 3 4 7 là A. a2 B. a65 28 C. a89 28 D. a 6073 28 Câu 106. Cho tam giác ABC biết AB ,AC , BC 8 9 11 . M là trung điểm BC, N là điểm trên đoạn AC sao cho AN x x 0 9 . Hệ thức nào sau đây là đúng ? A. x MN AC AB 1 1 2 9 2 . B. x MN AC BA 1 1 2 9 2 . F3 F2 F1 M A C B TỔNG ÔN HÌNH HỌC 10 – VECTOR THẦY LÂM PHONG (SÀI GÒN – 0933524179) ĐĂNG KÝ LỚP OFF TẠI 106/G26 LẠC LONG QUÂN P3 Q11 1 0 C. x MN AC AB 1 1 2 9 2 . D. x MN AC BA 1 1 9 2 2 . Vấn đề 5: Biểu thị một vectơ theo hai vectơ không cùng phương. Câu 107. Cho tam giác ABC cạnh BC 4 , M thuộc đoạn BC sao cho MC 1 . Cặp số m;n thỏa AM mAB nAC bằng : A. ; 1 3 2 2 . B. ; 1 3 2 2 . C. ; 1 3 4 4 D. ; 1 3 4 4 Câu 108. Cho hình bình hành ABCD có AB a , AD b . Gọi M là trung điểm của CD , N là trung điểm của BM . TínhAN theo a,b . A. a b 1 2 . B. a b 3 1 4 2 . C. a b 3 1 8 2 D. a b 1 3 2 4 Câu 109. Cho tam giác ABC và điểm I sao cho IA IB 2 . Biểu thị vecto CI theo hai vecto CA và CB như sau: A. CA CB CI 2 3 . B. CI CA CB 2 . C. CA CB CI 2 3 D. CA CB CI 2 3 Câu 110. Cho tam giác ABC và điểm I sao cho IA IB 2 0 . Biểu thị vecto CI theo hai vecto CA và CB như sau: A. CA CB CI 2 3 . B. CI CA CB 2 . C. CA CB CI 2 3 D. CA CB CI 2 3 Câu 111. Cho tam giác ABC và trọng tâm G. Đặt CA a,CB b Biểu thị vecto AG theo hai vecto a và b như sau: A. a b AG 2 3 . B.
Tài liệu đính kèm: