Toán học - Bảng công thức nguyên hàm mở rộng

pdf 2 trang Người đăng minhhieu30 Lượt xem 1134Lượt tải 0 Download
Bạn đang xem tài liệu "Toán học - Bảng công thức nguyên hàm mở rộng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Toán học - Bảng công thức nguyên hàm mở rộng
 GV: Huỳnh Thành B¶ng c«ng thøc nguyªn hµm më réng ĐT:0909077549 
CÔNG THỨC 
Nguyên hàm của những hàm số sơ cấp thường gặp 
dx x C  du u C  
 
1
x
x dx C 1
1

    
 
  
1
u
u du C 1
1

    
 
 
x
x
a
a dx C 0 a 1
lna
     
u
u
a
a dx C 0 a 1
lna
    
 
dx
ln x C x 0
x
    
du
ln u C u 0
u
   
x x
e dx e C  
u u
e du e C  
cosxdx sinx C  cosudu sinu C  
sinxdx cosx C   sinudu cosu C   
coskx
sin kxdx C
k
   
sin kx
coskxdx C
k
  
2
1
dx cot x C
sin x
   2
1
du tanu C
cos u
  
2
1
dx tanx C
cos x
  2
1
du cot u C
sin u
   
Caùc phöông phaùp tính nguyeân haøm 
a.Ph-¬ng ph¸p ®æi biÕn sè:    f u(x) u '(x)dx F u(x) C  
b.Ph-¬ng ph¸p tích phaân töøng phaàn: udv u.v vdu   
 GV: Huỳnh Thành B¶ng c«ng thøc nguyªn hµm më réng ĐT:0909077549 
   
1
d ax b ax b C
a
    
kx
kx ee dx C
k
  
 
1
1
dx , 1
1
ax b
ax b c
a





 
     
 
    
1
cos dx sinax b ax b
a
    c 
dx 1
ln ax b c
ax b a
  

  c    
1
sin dx cosax b ax b c
a

    
1
dxax b ax be e c
a
      
1
tg dx ln cosax b ax b c
a
     
1
dx
ln
px q px qa a c
p a
      
1
cotg dx ln sinax b ax b c
a
    
2 2
dx 1
arctg
x
c
a aa x
 

  
 
2
dx 1
cotg
sin
ax b c
aax b

  

 
2 2
dx 1
ln
2
a x
c
a a xa x

 

  
 
2
dx 1
tg
cos
ax b c
aax b
  

 
 2 2
2 2
dx
ln x x a c
x a
   

 2 2arcsin dx arcsin
x x
x a x c
a a
    
2 2
dx
arcsin
x
c
aa x
 

 2 2arccos dx arccos
x x
x a x c
a a
    
2 2
dx 1
arccos
x
c
a ax x a
 

  2 2arctg dx arctg ln
2
x x a
x a x c
a a
    
2 2
2 2
dx 1
ln
a x a
c
a xx x a
 
  

  
2 2arccotg dx arccotg ln
2
x x a
x a x c
a a
    
   ln dx ln
b
ax b x ax b x c
a
 
      
 
  
dx 1
ln tg
sin 2
ax b
c
ax b a

 

2 2 2
2 2 dx arcsin
2 2
x a x a x
a x c
a

     
dx 1
ln tg
sin 2
ax b
c
ax b a

 

 
2 2
sin cos
sin dx
ax
ax e a bx b bxe bx c
a b

 

 
 
2 2
cos sin
cos dx
ax
ax e a bx b bxe bx c
a b

 

 

Tài liệu đính kèm:

  • pdfCong_Thuc_Nguyen_Ham_Tich_Phan.pdf