ŀNguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 5 Chương 1 ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ Bài 1: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ 1.1 TÓM TẮT LÝ THUYẾT 1. Định nghĩa : Giả sử K là một khoảng , một đoạn hoặc một nửa khoảng . Hàm số f xác định trên K được gọi là • Đồng biến trên K nếu với mọi ( ) ( )1 2 1 2 1 2, ,x x K x x f x f x∈ < ⇒ < ; • Nghịch biến trên K nếu với mọi ( ) ( )1 2 1 2 1 2, ,x x K x x f x f x∈ . 2. Điều kiện cần để hàm số đơn điệu : Giả sử hàm số f có đạo hàm trên khoảng I • Nếu hàm số f đồng biến trên khoảng I thì ( )' 0f x ≥ với mọi x I∈ ; • Nếu hàm số f nghịch biến trên khoảng I thì ( )' 0f x ≤ với mọi x I∈ . 3. Điều kiện đủ để hàm số đơn điệu : Giả sử I là một khoảng hoặc nửa khoảng hoặc một đoạn , f là hàm số liên tục trên I và có đạo hàm tại mọi điểm trong của I ( tức là điểm thuộc I nhưng không phải đầu mút của I ) .Khi đó : • Nếu ( )' 0f x > với mọi x I∈ thì hàm số f đồng biến trên khoảng I ; • Nếu ( )' 0f x < với mọi x I∈ thì hàm số f nghịch biến trên khoảng I ; • Nếu ( )' 0f x = với mọi x I∈ thì hàm số f không đổi trên khoảng I . Chú ý : • Nếu hàm số f liên tục trên ;a b và có đạo hàm ( )' 0f x > trên khoảng ( );a b thì hàm số f đồng biến trên ;a b . • Nếu hàm số f liên tục trên ;a b và có đạo hàm ( )' 0f x < trên khoảng ( );a b thì hàm số f nghịch biến trên ;a b . • Giả sử hàm số f liên tục trên đoạn ;a b . * Nếu hàm số f đồng biến trên khoảng ( );a b thì nó đồng biến trên đoạn ;a b . Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 6 * Nếu hàm số f nghịch biến trên khoảng ( );a b thì nó nghịch biến trên đoạn ;a b . * Nếu hàm số f không đổi trên khoảng ( );a b thì không đổi trên đoạn ;a b . 4. Định lý mở rộng Giả sử hàm số f có đạo hàm trên khoảng I . • Nếu '( ) 0f x ≥ với x I∀ ∈ và '( ) 0f x = chỉ tại một số hữu hạn điểm thuộc I thì hàm số f đồng biến trên khoảng I ; • Nếu '( ) 0f x ≤ với x I∀ ∈ và '( ) 0f x = chỉ tại một số hữu hạn điểm thuộc I thì hàm số f nghịch biến trên khoảng I . 1.2 DẠNG TOÁN THƯỜNG GẶP Dạng 1 : Xét chiều biến thiên của hàm số . Xét chiều biến thiên của hàm số ( )y f x= ta thực hiện các bước sau: • Tìm tập xác định D của hàm số . • Tính đạo hàm ( )' 'y f x= . • Tìm các giá trị của x thuộc D để ( )' 0f x = hoặc ( )'f x không xác định ( ta gọi đó là điểm tới hạn hàm số ). • Xét dấu ( )' 'y f x= trên từng khoảng x thuộc D . • Dựa vào bảng xét dấu và điều kiện đủ suy ra khoảng đơn điệu của hàm số. Ví dụ 1: Xét chiều biến thiên của các hàm số sau: 2 1. 1 x y x + = − 2 2 1 2. 2 x x y x − + − = + Giải: 2 1. 1 x y x + = − * Hàm số đã cho xác định trên khoảng ( ) ( );1 1;−∞ ∪ +∞ . * Ta có: ( )2 3 ' 0, 1 1 y x x -= < ∀ ≠ − * Bảng biến thiên: x −∞ 1 +∞ 'y − − y 1 −∞ +∞ 1 Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 7 Vậy hàm số đồng biến trên mỗi khoảng ( );1−∞ và ( )1;+∞ . 2 2 1 2. 2 x x y x − + − = + * Hàm số đã cho xác định trên khoảng ( ) ( ); 2 2;−∞ − ∪ − +∞ . * Ta có: ( ) 2 2 4 5 ' , 2 2 x x y x x − − + = ∀ ≠ − + 5 ' 0 1 x y x = − = ⇔ = * Bảng biến thiên : x −∞ 5− 2− 1 +∞ 'y − 0 + + 0 − y +∞ +∞ −∞ −∞ Vậy, hàm số đồng biến trên các khoảng ( )5; 2− − và ( )2;1− , nghịch biến trên các khoảng ( ); 5−∞ − và ( )1;+∞ . Nhận xét: * Đối với hàm số ( . 0) ax b y a c cx d + = ≠ + luôn đồng biến hoặc luôn nghịch biến trên từng khoảng xác định của nó. * Đối với hàm số 2 ' ' ax bx c y a x b + + = + luôn có ít nhất hai khoảng đơn điệu. * Cả hai dạng hàm số trên không thể luôn đơn điệu trênℝ . Bài tập tương tự : Xét chiều biến thiên của các hàm số sau: 2 1 1. 1 x y x − = + 2 4 3 2. 2 x x y x + + = + 1 3. 3 x y x + = 2 3 4. 1 x y x = + 2 2 4 3 5. 2 2 4 x x y x x − + = − − 2 2 2 2 6. 2 1 x x y x x + + = + + Ví dụ 2: Xét chiều biến thiên của các hàm số sau: 3 21. 3 24 26y x x x= − − + + 4 22. 6 8 1y x x x = − + + Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 8 Giải: 3 21. 3 24 26y x x x= − − + + * Hàm số đã cho xác định trên ℝ . * Ta có : 2' 3 6 24y x x= − − + 2 4 ' 0 3 6 24 0 2 x y x x x = − = ⇔ − − + = ⇔ = * Bảng xét dấu của 'y : x −∞ 4− 2 +∞ 'y − 0 + 0 − + Trên khoảng ( )4;2− : ' 0y y> ⇒ đồng biến trên khoảng ( )4;2− , + Trên mỗi khoảng ( ) ( ); 4 , 2;−∞ − +∞ : ' 0y y< ⇒ nghịch biến trên các khoảng ( ); 4 ,−∞ − ( )2;+∞ . Hoặc ta có thể trình bày : * Hàm số đã cho xác định trên ℝ . * Ta có : 2' 3 6 24y x x= − − + 2 4 ' 0 3 6 24 0 2 x y x x x = − = ⇔ − − + = ⇔ = * Bảng biến thiên : x −∞ 4− 2 +∞ 'y − 0 + 0 − y +∞ −∞ Vậy, hàm số đồng biến trên khoảng ( )4;2− , nghịch biến trên các khoảng ( ); 4−∞ − và ( )2;+∞ . 4 22. 6 8 1y x x x = − + + * Hàm số đã cho xác định trên ℝ . * Ta có: 3 2' 4 12 8 4( 1) ( 2)y x x x x= − + = − + 2 2 ' 0 4( 1) ( 2) 0 1 x y x x x = − = ⇔ − + = ⇔ = * Bảng xét dấu: x −∞ 2− 1 +∞ 'y − 0 + 0 + Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 9 Vậy,hàm số đồng biến trên khoảng ( 2; )− +∞ và nghịch biến trên khoảng ( ; 2)−∞ − . Nhận xét: * Ta thấy tại 1x = thì 0y = , nhưng qua đó 'y không đổi dấu. * Đối với hàm bậc bốn 4 3 2y ax bx cx dx e= + + + + luôn có ít nhất một khoảng đồng biến và một khoảng nghịch biến. Do vậy với hàm bậc bốn không thể đơn điệu trên ℝ . Bài tập tương tự : Xét chiều biến thiên của các hàm số sau: 3 21. 3 2y x x= − + 3 22. 3 3 2y x x x= + + + 4 213. 2 1 4 y x x= − + − 4 24. 2 3y x x= + − 5 345. 8 5 y x x= − + + 5 4 21 3 36. 2 2 5 4 2 y x x x x= − + − 7 6 577. 9 7 12 5 y x x x= − + + Ví dụ 3 : Xét chiều biến thiên của các hàm số sau: 21. 2y x x= − 2 32. 3y x x= − 23. 1y x x= − 24. 1 2 3 3y x x x= + − + + Giải: 21. 2y x x= − . * Hàm số đã cho xác định trên mỗi nửa khoảng ( );0 2; −∞ ∪ +∞ . * Ta có: ( ) ( ) 2 1 ' , ;0 2; 2 x y x x x − = ∀ ∈ −∞ ∪ +∞ − . Hàm số không có đạo hàm tại các điểm 0, 2x x= = . Cách 1 : + Trên khoảng ( );0−∞ : ' 0y < ⇒ hàm số nghịch biến trên khoảng ( );0−∞ , + Trên khoảng ( )2;+∞ : ' 0y > ⇒ hàm số đồng biến trên khoảng ( )2;+∞ . Cách 2 : Bảng biến thiên : x −∞ 0 2 +∞ 'y − || || + y Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 10 Vậy , hàm số nghịch biến trên khoảng ( );0−∞ và đồng biến trên khoảng ( )2;+∞ 2 32. 3y x x= − * Hàm số đã cho xác định trên nửa khoảng ( ;3]−∞ . * Ta có: ( ) ( ) 2 2 3 3(2 ) ' , ;0 0;3 2 3 x x y x x x − = ∀ ∈ −∞ ∪ − . Hàm số không có đạo hàm tại các điểm 0, 3x x= = . Suy ra, trên mỗi khoảng ( );0−∞ và ( )0;3 : ' 0 2y x= ⇔ = Bảng biến thiên: x −∞ 0 2 3 +∞ 'y − || + 0 − || y Hàm số đồng biến trên khoảng (0;2) , nghịch biến trên các khoảng ( ;0)−∞ và (2;3) . 23. 1y x x= − * Hàm số đã cho xác định trên đoạn 1;1 − . * Ta có: ( ) 2 2 1 2 ' , 1;1 1 x y x x − = ∀ ∈ − − Hàm số không có đạo hàm tại các điểm 1, 1x x= − = . Trên khoảng ( )1;1− : 2' 0 2 y x= ⇔ = ± Bảng biến thiên: x −∞ 1− 2 2 − 2 2 1 +∞ 'y || − 0 + 0 − || y Hàm số đồng biến trên khoảng 2 2 ; 2 2 − , nghịch biến trên mỗi khoảng 2 1; 2 − − và 2 ;1 2 . Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 11 24. 1 2 3 3y x x x= + − + + * Hàm số đã cho xác định trên ℝ . * Ta có: 2 2 3 ' 1 3 3 x y x x + = − + + ( ) 2 22 3 2' 0 3 3 2 3 1 3 3 2 3 x y x x x x x x x ≥ − = ⇔ + + = + ⇔ ⇔ = − + + = + Bảng biến thiên : x −∞ 1− +∞ 'y + 0 − y Hàm số đồng biến trên khoảng ( ; 1)−∞ − , nghịch biến trên khoảng ( 1; )− +∞ . Bài tập tương tự : Xét chiều biến thiên của các hàm số sau: 21. 2y x x= − 22. 1 4 3y x x x= + − − + 33. 3 5y x= − 3 24. 2y x x= − ( ) 25. 4 3 6 1y x x= − + 22 3 6. 3 2 x x y x − + = + 2 2 7. 3 x y x x + = − + Ví dụ 4 :Xét chiều biến thiên của các hàm số sau: 2| 2 3 |y x x= − − Giải: 2 2 2 2 3 khi 1 3 | 2 3 | 2 3 khi 1 3 x x x x y x x x x x − − ≤ − ∨ ≥ = − − = − + + − < < * Hàm số đã cho xác định trên ℝ . * Ta có: 2 2 khi 1 3 ' 2 2 khi 1 3 x x x y x x − = − + − < < Hàm số không có đạo hàm tại 1x = − và 3x = . + Trên khoảng ( )1;3− : ' 0 1y x= ⇔ = ; + Trên khoảng ( ); 1−∞ − : ' 0y < ; + Trên khoảng ( )3;+∞ : ' 0y > . Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 12 Bảng biến thiên: x −∞ 1− 1 3 +∞ 'y − || + 0 − || + y Hàm số đồng biến trên mỗi khoảng( 1;1)− và (3; )+∞ , nghịch biến trên mỗi khoảng ( ; 1)−∞ − và (1;3) . Bài tập tương tự : Xét chiều biến thiên của các hàm số sau: 21. 5 4y x x= − + 22. 3 7 6 9y x x x= − + + − + 23. 1 2 5 7y x x x= − + − + − 2 24. 7 10y x x x= + − + Ví dụ 5 : Xét chiều biến thiên của hàm số sau: 2 sin cos2y x x= + trên đoạn 0;π . Giải : * Hàm số đã cho xác định trên đoạn 0;π * Ta có: ( )' 2 cos 1 2 sin , 0;y x x x π = − ∈ . Trên đoạn 0;π : 0; cos 0' 0 1 sin 2 x x y x π ∈ == ⇔ ⇔ = 5 2 6 6 x x x π π π = ∨ = ∨ = . Bảng biến thiên: x 0 6 π 2 π 5 6 π π 'y + 0 − 0 + 0 − y Dựa vào bảng biến thiên suy ra : hàm số đồng biến trên các khoảng 0; 6 π và 5 ; 2 6 π π , nghịch biến trên các khoảng ; 6 2 π π và 5 ; 6 π π . Bài tập tương tự : Xét chiều biến thiên của các hàm số sau: Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 13 1. sin 3y x= trên khoảng 0; 3 π . 2. cotx y x = trên khoảng ( )0;π . 3. ( )1 1sin 4 2 3 cos2 8 4 y x x= − − trên khoảng 0; 2 π . 4. 3 sin 3 cos 6 3 y x x π π = − + + trên đoạn 0;π . Ví dụ 6: Chứng minh rằng hàm số = +2sin cosy x x đồng biến trên đoạn π 0; 3 và nghịch biến trên đoạn π π ; 3 . Giải : * Hàm số đã cho xác định trên đoạn 0;π * Ta có: ( ) ( )π= − ∈' sin 2 cos 1 , 0;y x x x Vì ( )0; sin 0x xπ∈ ⇒ > nên trên ( ) 10; : ' 0 cos 2 3 y x x π π = ⇔ = ⇔ = . + Trên khoảng 0; 3 π : ' 0y > nên hàm số đồng biến trên đoạn π 0; 3 ; + Trên khoảng ; 3 π π : ' 0y < nên hàm số nghịch biến trên đoạn π π ; 3 . Bài tập tương tự : 1. Chứng minh rằng hàm số ( ) ( ) ( )sin sinf x x x x xπ= − − − đồng biến trên đoạn 0; 2 π . 2. Chứng minh rằng hàm số cos2 2 3y x x= − + nghịch biến trên ℝ . 3. Chứng minh rằng hàm số t n 2 x y a= đồng biến trên các khoảng ( )0;π và ( );2 .π π 4. Chứng minh rằng hàm số 3 cos 3 2 x y x= + đồng biến trên khoảng 0; 18 π và nghịch biến trên khoảng ; . 18 2 π π Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 14 Dạng 2 : Tùy theo tham số m khảo sát tính đơn điệu của hàm số . Ví dụ : Tùy theo m khảo sát tính đơn điệu của hàm số: ( )3 2 3 21 1 1 1 3 2 y x m m x m x m= − + + + + Giải: * Hàm số đã cho xác định trên ℝ . * Ta có ( )2 3' 1y x m m x m= − + + và ( )22 1m m∆ = − + 0m = thì 2' 0,y x x= ≥ ∀ ∈ ℝ và ' 0y = chỉ tại điểm 0x = . Hàm số đồng biến trên mỗi nửa khoảng ( ;0−∞ và )0; +∞ . Do đó hàm số đồng biến trên ℝ . + 1m = thì ( )2' 1 0,y x x= − ≥ ∀ ∈ ℝ và ' 0y = chỉ tại điểm 1x = . Hàm số đồng biến trên mỗi nửa khoảng ( ;1−∞ và )1; +∞ . Do đó hàm số đồng biến trên ℝ . + 0, 1m m≠ ≠ khi đó 2' 0 x m y x m = = ⇔ = . ⋅ Nếu 0m thì 2m m< Bảng xét dấu 'y : x −∞ m 2m +∞ 'y + 0 − 0 + Dựa vào bảng xét dấu, suy ra hàm số đồng biến trên các khoảng ( );m−∞ và ( )2;m +∞ , giảm trên khoảng ( )2;m m . ⋅ Nếu 0 1m Bảng xét dấu 'y : x −∞ 2m m +∞ 'y + 0 − 0 + Dựa vào bảng xét dấu, suy ra hàm số đồng biến trên các khoảng ( )2;m−∞ và ( );m +∞ , giảm trên khoảng ( )2;m m . Bài tập tự luyện: Tùy theo m khảo sát tính đơn điệu của hàm số: 1. 3 2 3 1 1 3 3 2 y x mx m x m= − + + − 2. ( ) ( )3 21 11 1 2 3 3 2 y m x m x x m= − − − + + + Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 15 Dạng 3 : Hàm số đơn điệu trên ℝ . Sử dụng định lý về điều kiện cần • Nếu hàm số ( )f x đơn điệu tăng trên ℝ thì ( )' 0,f x x ℝ≥ ∀ ∈ . • Nếu hàm số ( )f x đơn điệu giảm trên ℝ thì ( )' 0,f x x ℝ≤ ∀ ∈ . Ví dụ 1 : Tìm m để các hàm số sau luôn nghịch biến trên mỗi khoảng xác định . 3 2 1. mx m y x m + − = + ( ) 22 2 3 1 2. 1 x m x m y x − + + − + = − Giải : 3 2 1. mx m y x m + − = + * Hàm số đã cho xác định trên khoảng ( ) ( ); ;m m−∞ − ∪ − +∞ * Ta có : ( ) 2 2 2 3 ' , m m y x m x m + − = ≠ − + . Cách 1 : * Bảng xét dấu 'y m −∞ 3− 1 +∞ 'y + 0 − 0 + Dựa vào bảng xét dấu ta thấy Nếu 3 1m− < < thì ' 0y < ⇒ hàm số nghịch biến trên mỗi khoảng ( ); m−∞ − , ( );m− +∞ . Cách 2 : Hàm số nghịch biến trên tập xác định khi : ( ) ( ) 2' 0, ; ; 2 3 0 3 1y x m m m m m< ∀ ∈ −∞ − ∪ − +∞ ⇔ + − < ⇔ − < < ( )22 2 3 1 1 2 2. 2 1 1 x m x m m y x m x x − + + − + − = = − + + − − * Hàm số đã cho xác định trên khoảng ( ) ( );1 1;−∞ ∪ +∞ . * Ta có : ( )2 2 1 ' 2 , 1 1 m y x x − = − + ≠ − + 1 ' 0, 1 2 m y x≤ ⇒ < ≠ , do đó hàm số nghịch biến trên mỗi khoảng ( );1−∞ , ( )1;+∞ . Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 16 + 1 2 m > khi đó phương trình ' 0y = có hai nghiệm 1 2 1x x< < ⇒ hàm số đồng biến trên mỗi khoảng ( )1;1x và ( )21;x , trường hợp này không thỏa . Vậy 1 2 m ≤ thỏa mãn yêu cầu của bài toán. Bài tập tương tự : Tìm m để các hàm số sau luôn nghịch biến trên mỗi khoảng xác định . 2 7 11 1. 1 x m m y x − + − = − ( ) 21 2 3 2. 3 m x m m y x m − + + − = + ( ) 21 2 1 3. 1 m x x y x − + + = + ( )2 2 2 1 4. 3 x m x m y x − + + − = − Ví dụ 2 : Tìm m để các hàm số sau luôn nghịch biến trên ℝ . ( )3 211. 2 2 1 3 2 3 y x x m x m= − + + + − + ( ) 3 2 22. ( 2) ( 2) 8 1 3 x y m m x m x m= + − + + − + − Giải: ( )3 211. 2 2 1 3 2 3 y x x m x m= − + + + − + * Hàm số đã cho xác định trên ℝ . * Ta có : 2' 4 2 1y x x m= − + + + và có ' 2 5m∆ = + * Bảng xét dấu '∆ m −∞ 5 2 − +∞ '∆ − 0 + 5 2 m+ = − thì ( )= − − ≤2' 2 0y x với mọi x ∈ ℝ và ' 0y = chỉ tại điểm = 2x Do đó hàm số nghịch biến trên ℝ . 5 2 m+ < − thì < ∀ ∈ ℝ' 0,y x . Do đó hàm số nghịch biến trên ℝ . 5 2 m+ > − thì =' 0y có hai nghiệm ( )< 1 2 1 2,x x x x . Hàm số đồng biến trên khoảng ( ) 1 2;x x . Trường hợp này không thỏa mãn . ( ) 3 2 22. ( 2) ( 2) 8 1 3 x y m m x m x m= + − + + − + − * Hàm số đã cho xác định trên ℝ . Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com ɩNguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 17 * Ta có 2' ( 2) 2( 2) 8 y m x m x m= + − + + − . + 2m = − , khi đó ' 10 0,y x= − ≤ ∀ ∈ ⇒ℝ hàm số luôn nghịch biến trên ℝ . + 2m ≠ − tam thức 2' ( 2) 2( 2) 8 y m x m x m= + − + + − có ' 10( 2)m∆ = + *Bảng xét dấu '∆ m −∞ 2− +∞ '∆ − 0 + 2m+ < − thì ' 0y < với mọi x ∈ ℝ . Do đó hàm số nghịch biến trên ℝ . 2m+ > − thì =' 0y có hai nghiệm ( )< 1 2 1 2,x x x x . Hàm số đồng biến trên khoảng ( ) 1 2;x x . Trường hợp này không thỏa mãn . Vậy 2m ≤ − là những giá trị cần tìm. Bài tập tương tự : Tìm m để các hàm số sau luôn nghịch biến trên mỗi khoảng xác định . 1. 2 1 m y x x = + + − ( ) 42. 1 3 2 m y m x x + = − − − + 3 213. 1 3 y x m x= − + 4 2 214. 1 4 y mx m x m= − + − Ví dụ 3 : Tìm a để các hàm số sau luôn đồng biến trên ℝ . 3 211. 4 3 3 y x ax x= + + + ( ) ( )2 3 212. 1 1 3 5 3 y a x a x x= − + + + + Giải : 3 211. 4 3 3 y x ax x= + + + * Hàm số đã cho xác định trên ℝ . * Ta có 2' 2 4y x ax= + + và có 2' 4a∆ = − * Bảng xét dấu '∆ a −∞ 2− 2 +∞ '∆ + 0 − 0 + + Nếu 2 2a− với mọi x ∈ ℝ . Hàm số y đồng biến trênℝ . + Nếu 2a = thì ( )2' 2y x= + , ta có : ' 0 2, ' 0, 2y x y x= ⇔ = − > ≠ − . Hàm số y đồng biến trên mỗi nửa khoảng ( ; 2−∞ − và )2;− +∞ nên hàm số y đồng biến trênℝ . + Tương tự nếu 2a = − . Hàm số y đồng biến trênℝ . Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 18 + Nếu 2a thì ' 0y = có hai nghiệm phân biệt 1 2 ,x x . Giả sử 1 2 x x< . Khi đó hàm số nghịch biến trên khoảng ( )1 2;x x ,đồng biến trên mỗi khoảng ( )1;x−∞ và ( )2;x +∞ . Do đó 2a không thoả mãn yêu cầu bài toán . Vậy hàm số y đồng biến trênℝ khi và chỉ khi 2 2a− ≤ ≤ . ( ) ( )2 3 212. 1 1 3 5 3 y a x a x x= − + + + + * Hàm số đã cho xác định trên ℝ . * Ta có : ( ) ( )2 2' 1 2 1 3y a x a x= − + + + và có ( )2' 2 2a a∆ = − + + Hàm số y đồng biến trênℝ khi và chỉ khi ( )' 0, 1y x⇔ ≥ ∀ ∈ ℝ + Xét 2 1 0 1a a− = ⇔ = ± 3 1 ' 4 3 ' 0 1 4 a y x y x a= ⇒ = + ⇒ ≥ ⇔ ≥ − ⇒ = i không thoả yêu cầu bài toán. 1 ' 3 0 1a y x a= − ⇒ = > ∀ ∈ ⇒ = − i ℝ thoả mãn yêu cầu bài toán. + Xét 2 1 0 1a a− ≠ ⇔ ≠ ± * Bảng xét dấu '∆ a −∞ 1− 1 2 +∞ '∆ − 0 + 0 − + Nếu 1 2a a thì ' 0y > với mọi x ∈ ℝ . Hàm số y đồng biến trênℝ . + Nếu 2a = thì ( )2' 3 1y x= + , ta có : ' 0 1, ' 0, 1y x y x= ⇔ = − > ≠ − . Hàm số y đồng biến trên mỗi nửa khoảng ( ); 1 ` 1;va −∞ − − +∞ nên hàm số y đồng biến trênℝ . + Nếu 1 2, 1a a− < < ≠ thì ' 0y = có hai nghiệm phân biệt 1 2 ,x x . Giả sử 1 2 x x< . Khi đó hàm số nghịch biến trên khoảng ( )1 2;x x ,đồng biến trên mỗi khoảng ( )1;x−∞ và ( )2;x +∞ . Do đó 1 2, 1a a− < < ≠ không thoả mãn yêu cầu bài toán . Do đó hàm số y đồng biến trênℝ khi và chỉ khi 1 2a a< − ∨ ≥ . Vậy với 1 2a≤ ≤ thì hàm số y đồng biến trênℝ . Bài tập tương tự : Tìm m để các hàm số sau luôn đồng biến trên mỗi khoảng xác định . ( )3 2 211. 3 1 3 2 m y x x m x= − + − − ( ) 3 22. 2 3 3 x y mx m x= − + + + Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com Nguyễn Phú Khánh – Đà Lạt Tài Liệu ôn thi Tú Tài Đại học theo cấu trúc BGD. 19 ( ) ( ) 3 23. 2 1 4 1 3 x y m m x x= + − − + − ( ) ( ) ( ) 3 24. 2 2 3 5 6 2 3 x y m m x m x= − − − + − + Chú ý : Phương pháp: * Hàm số ( , )y f x m= tăng trên ' 0 ' 0 x y x min y ∈ ⇔ ≥ ∀ ∈ ⇔ ≥ ℝ ℝ ℝ . * Hàm số ( , )y f x m= giảm trên ' 0 ' 0 x y x max y ∈ ⇔ ≤ ∀ ∈ ⇔ ≤ ℝ ℝ ℝ . Chú ý: 1) Nếu 2'y ax bx c= + + thì * 0 0 ' 0 0 0 a b c y x a = = ≥≥ ∀ ∈ ⇔ > ∆ ≤ ℝ * 0 0 ' 0 0 0 a b c y x a = = ≤≤ ∀ ∈ ⇔ < ∆ ≤ ℝ 2) Hàm đồng biến trên ℝ thì nó phải xác định trên ℝ . Dạng 4 : Hàm số đơn điệu trên tập con củaℝ . Phương pháp: * Hàm số ( , )y f x m= tăng x I∀ ∈ ' 0 min ' 0 x I y x I y ∈ ⇔ ≥ ∀ ∈ ⇔ ≥ . * Hàm số ( , )y f x m= giảm ' 0 max ' 0 x I x I y x I y ∈ ∀ ∈ ⇔ ≤ ∀ ∈ ⇔ ≤ . Ví dụ 1 : Tìm m để các hàm số sau 1. 4mx y x m +
Tài liệu đính kèm: