Tài liệu ôn thi môn Toán THPTQG - Chủ đề 7: Hình học không gian

doc 20 trang Người đăng khoa-nguyen Lượt xem 1103Lượt tải 0 Download
Bạn đang xem tài liệu "Tài liệu ôn thi môn Toán THPTQG - Chủ đề 7: Hình học không gian", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu ôn thi môn Toán THPTQG - Chủ đề 7: Hình học không gian
Chủ đề 7: HÌNH HỌC KHÔNG GIAN
ÔN TẬP 1: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9-10 
1. Hệ thức lượng trong tam giác vuông : Cho vuông ở A ta có : 
Định lý Pitago : 
AB. AC = BC. AH 
BC = 2AM 
b = a. sinB = a.cosC, c = a. sinC = a.cosB, a = , 
	 b = c. tanB = c.cot C 
2. Hệ thức lượng trong tam giác thường:
 * Định lý Côsin: a2 = b2 + c2 - 2bc.cosA
 * Định lý Sin: 
3. Các công thức tính diện tích.
 a/ Công thức tính diện tích tam giác:
 a.ha = với
 Đặc biệt :*vuông ở A : ,* đều cạnh a: 
 b/ Diện tích hình vuông : S = cạnh x cạnh
 c/ Diện tích hình chữ nhật : S = dài x rộng
 d/ Diện tích hình thoi : S = (chéo dài x chéo ngắn)
 d/ Diện tích hình thang : (đáy lớn + đáy nhỏ) x chiều cao 
 e/ Diện tích hình bình hành : S = đáy x chiều cao 
 f/ Diện tích hình tròn : 
4. Các hệ thức quan trọng trong tam giác đều:
§3.KHOẢNG CÁCH
1. Khoảng cách từ 1 điểm tới 1 đường thẳng , đến 1 mặt phẳng:
 Khoảng cách từ điểm M đến đường thẳng a (hoặc đến mặt phẳng (P)) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên đường thẳng a ( hoặc trên mp(P))
 d(O; a) = OH; d(O; (P)) = OH
2. Khoảng cách giữa đường thẳng và mặt phẳng song song: 
Khoảng cách giữa đường thẳng a và mp(P) song song với a là khoảng cách từ một điểm nào đó của a đến mp(P).
 d(a;(P)) = d(O; (P)) = OH
3. Khoảng cách giữa hai mặt phẳng song song: 
là khoảng cách từ một điểm bất kỳ trên mặt phẳng này đến mặt phẳng kia.
 d((P);(Q)) = d(O; (P)) = OH
4.Khoảng cách giữa hai đường thẳng chéo nhau: 
là độ dài đoạn vuông góc chung của hai đường thẳng đó.
 d(a;b) = AB
§4.GÓC
4. Diện tích hình chiếu: Gọi S là diện tích của đa giác (H) trong mp(P) và S’ là diện tích hình chiếu (H’) của (H) trên mp(P’) thì 
trong đó là góc giữa hai mặt phẳng (P),(P’).
Chú ý:
1/ Đường chéo của hình vuông cạnh a là d = a, 
Đường chéo của hình lập phương cạnh a là d = a, 
Đường chéo của hình hộp chữ nhật có 3 kích thước a, b, c là d = ,
2/ Đường cao của tam giác đều cạnh a là h = 
3/ Hình chóp đều là hình chóp có đáy là đa giác đều và các cạnh bên đều bằng 
 nhau ( hoặc có đáy là đa giác đều, hình chiếu của đỉnh trùng với tâm của đáy).
4/ Lăng trụ đều là lăng trụ đứng có đáy là đa giác đều.
II/ Bài tập:
LOẠI 1: THỂ TÍCH LĂNG TRỤ
Khối lăng trụ đứng có chiều cao hay cạnh đáy
 Dạng 1: 
Ví dụ 1: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác ABC vuông cân tại A có cạnh BC = a và biết A'B = 3a. Tính thể tích khối lăng trụ.
Ví dụ 2: Cho lăng trụ tứ giác đều ABCD.A’B’C’D' có cạnh bên bằng 4a và đường chéo 5a.
Tính thể tích khối lăng trụ này.
Ví dụ 3: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh a = 4 và biết diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ.
Lời giải:
Gọi I là trung điểm BC .Ta có
ABC đều nên
.
 Vậy : VABC.A’B’C’ = SABC .AA'= 
Ví dụ 5: Cho hình hộp đứng có đáy là hình thoi cạnh a và có góc nhọn bằng 600 Đường chéo lớn của đáy bằng đường chéo nhỏ của lăng trụ. Tính thể tích hình hộp . 
Lời giải:
Ta có tam giác ABD đều nên : BD = a
và SABCD = 2SABD = 
Theo đề bài BD' = AC = 
 Vậy V = SABCD.DD' = 
Bài tập: 
Bài 1: Cho lăng trụ đứng có đáy là tam giác đều biết rằng tất cả các cạnh của lăng trụ bằng a. Tính thể tích và tổng diện tích các mặt bên của lăng trụ.
	 ĐS: ; S = 3a2 
Bài 2: Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là tứ giác đều cạnh a biết rằng . Tính thể tích của lăng trụ.
 Đs: V = 2a3 
Bài 3: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại A ,biết rằng chiều cao lăng trụ là 3a và mặt bên AA'B'B có đường chéo là 5a . Tính thể tích lăng trụ.
 Đs: V = 24a3
 2) Dạng 2: Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng.
Ví dụ 1: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại B với BA = BC = a ,biết A'B hợp với đáy ABC một góc 600. Tính thể tích lăng trụ.	
Ví dụ 2: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông tại A với AC = a , = 60 o biết BC' hợp với (AA'C'C) một góc 300. Tính AC' và thể tích lăng trụ.
Lời giải: 
.
Ta có:
nên AC' là hình chiếu của BC' trên (AA'C'C).
Vậy góc[BC';(AA"C"C)] = = 30o 
 V =B.h = SABC.AA'
 là nửa tam giác đều nên 
 Vậy V = 
Ví dụ 3: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông cạnh a và đường chéo BD' của lăng trụ hợp với đáy ABCD một góc 300. Tính thể tích và tổng diên tích của các mặt bên của lăng trụ . 
Lời giải:
Ta có ABCD A'B'C'D' là lăng trụ đứng nên ta có: và BD là hình chiếu của BD' trên ABCD.
 Vậy góc [BD';(ABCD)] = 
 Vậy V = SABCD.DD' = S = 4SADD'A' = 
Ví dụ 4: Cho hình hộp đứng ABCD A'B'C'D' có đáy ABCD là hình thoi cạnh a và = 60o biết AB' hợp với đáy (ABCD) một góc 30o. Tính thể tích của hình hộp. 	
Bài tập : 
Bài 1: Cho lăng trụ đứng ABC A'B'C' có đáy ABC vuông cân tại B biết 
A'C = a và A'C hợp với mặt bên (AA'B'B) một góc 30o . Tính thể tích lăng trụ
	 ĐS: 
Bài 2: Cho lăng trụ đứng ABC A'B'C' có đáy ABC vuông tại B biết 
BB' = AB = a và B'C hợp với đáy (ABC) một góc 30o . Tính thể tích lăng trụ.
	 ĐS: 
Bài 3: Cho lăng trụ đứng ABC A'B'C' có đáy ABC là tam giác đều cạnh a biết AB' hợp với mặt bên (BCC'B') một góc 30o . 
Tính độ dài AB' và thể tích lăng trụ . ĐS: ; 
3) Dạng 3: Lăng trụ đứng có góc giữa 2 mặt phẳng
Ví dụ 1: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại B với BA = BC = a , biết (A'BC) hợp với đáy (ABC) một góc 600 .Tính thể tích lăng trụ.
Ví dụ 2: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều . Mặt (A’BC) tạo với đáy một góc 300 và diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ.
Lời giải:
 đều mà AA' nên A'I(đl 3). 
 Vậy góc[(A'BC);)ABC)] = = 30o
 Giả sử BI = x .Ta có 
 A’A = AI.tan 300 = 
 Vậy VABC.A’B’C’ = CI.AI.A’A = x3 
 Mà SA’BC = BI.A’I = x.2x = 8
 Do đó VABC.A’B’C’ = 8
Ví dụ 3: Cho lăng trụ tứ giác đều ABCD A'B'C'D' có cạnh đáy a và mặt phẳng (BDC') hợp với đáy (ABCD) một góc 60o.Tính thể tích khối hộp chữ nhật. 
Lời giải:
Gọi O là tâm của ABCD . Ta có
ABCD là hình vuông nên
CC'(ABCD) nên OC'BD (đl 3). Vậy góc[(BDC');(ABCD)] = = 60o 
 Ta có V = B.h = SABCD.CC'
ABCD là hình vuông nên SABCD = a2 
 vuông nên CC' = OC.tan60o =
 Vậy V = 
Ví dụ 4: Cho hình hộp chữ nhật ABCD A'B'C'D' có AA' = 2a ; mặt phẳng (A'BC) hợp với đáy (ABCD) một góc 60o và A'C hợp với đáy (ABCD) một góc 30o. Tính thể tích khối hộp chữ nhật. 
Lời giải:
Ta có AA' AC là hình chiếu của A'C trên (ABCD) 
Vậy góc[A'C,(ABCD)] = 
BC AB BC A'B (đl 3) . 
Vậy góc[(A'BC),(ABCD)] = 
AC = AA'.cot30o = 
AB = AA'.cot60o = 
 Vậy V = AB.BC.AA' = 
Bài tập: 
Bài 1: Cho hộp chữ nhật ABCD A'B'C'D' có AA' = a biết đường chéo A'C hợp với đáy ABCD một góc 30o và mặt (A'BC) hợp với đáy ABCD một góc 600 . Tính thể tích hộp chữ nhật. Đs: 
Bài 2: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông và cạnh bên bằng a biết rằng mặt (ABC'D') hợp với đáy một góc 30o.Tính thể tích khối lăng trụ. Đs: V = 3a3
Bài 3: Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác vuông cân tại B và AC = 2a biết rằng (A'BC) hợp với đáy ABC một góc 45o. Tính thể tích lăng trụ. Đs: 
Bài 4: Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác cân tại A với AB = AC = a và biết rằng (A'BC) hợp với đáy ABC một góc 45o. Tính thể tích lăng trụ. Đs: 
4) Dạng 4: Khối lăng trụ xiên
Ví dụ 1: Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a , biết cạnh bên là và hợp với đáy ABC một góc 60o. Tính thể tích lăng trụ.
Lời giải:
Ta có là hình chiếu của CC' trên (ABC)
 Vậy 
 SABC = .Vậy V = SABC.C'H = 
Ví dụ 2: Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a . Hình chiếu của A' xuống (ABC) là tâm O đường tròn ngoại tiếp tam giác ABC biết AA' hợp với đáy ABC một góc 60 .
1) Chứng minh rằng BB'C'C là hình chữ nhật.
2) Tính thể tích lăng trụ .
Lời giải:
1) Ta có là hình chiếu của AA' trên (ABC)
 Vậy 
 Ta có BB'CC' là hình bình hành ( vì mặt bên của lăng trụ)
 tại trung điểm H của BC nên (đl 3 )
 mà AA'//BB' nên Vậy BB'CC' là hình chữ nhật.
2) đều nên 
 Vậy V = SABC.A'O = 
Bài tập: 
Bài 1: Cho lăng trụ ABC A'B'C'có các cạnh đáy là 13;14;15và biết cạnh bên bằng 2a hợp với đáy ABCD một góc 45o . Tính thể tích lăng trụ. Đs: V = 
Bài 2: Cho lăng trụ ABCD A'B'C'D'có đáy ABCD là hình vuông cạnh a và biết cạnh bên bằng 8 hợp với đáy ABC một góc 30o.Tính thể tích lăng trụ. Đs: V =336
Bài 3: Cho hình hộp ABCD A'B'C'D'có AB =a;AD =b;AA' = c và và biết cạnh bên AA' hợp với đáy ABC một góc 60o.Tính thể tích lăng trụ.
LOẠI 2: THỂ TÍCH KHỐI CHÓP
Dạng 1: Khối chóp có cạnh bên vuông góc với đáy
Ví dụ 1: Cho hình chóp SABC có SB = SC = BC = CA = a . Hai mặt (ABC) và (ASC) cùng vuông góc với (SBC). Tính thể tích hình chóp .
Lời giải:
Ta có 
Do đó 
Ví dụ 2: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B với AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o.
	1) Chứng minh các mặt bên là tam giác vuông . 
	2) Tính thể tích hình chóp.
 Ví dụ 3: Cho hình chóp SABC có đáy ABC là tam giác đều cạnh a biết SA vuông góc với đáy ABC và (SBC) hợp với đáy (ABC) một góc 60o. Tính thể tích hình chóp .
Ví dụ 4: Cho hình chóp SABCD có đáy ABCD là hình vuông có cạnh a và SA vuông góc đáy ABCD và mặt bên (SCD) hợp với đáy một góc 60o.
	1) Tính thể tích hình chóp SABCD.
	2) Tính khoảng cách từ A đến mặt phẳng (SCD).
Lời giải: 
1) Ta có và ( đl 3 ).(1)
Vậy góc[(SCD),(ABCD)] = = 60o .
vuông nên SA = AD.tan60o = 
Vậy 
 2) Ta dựng AH ,vì CD(SAD) (do (1) ) nên CD AH 
 Vậy AH là khoảng cách từ A đến (SCD).
 Vậy AH = 
Bài tập: 
Bài 1: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B với 
BA=BC=a biết SA vuông góc với đáy ABC và SB hợp với (SAB) một góc 30o. 
 Tính thể tích hình chóp . Đs: V = 
Bài 2: Cho khối chóp SABCD có đáy ABCD là hình vuông biết 
SA (ABCD),SC = a và SC hợp với đáy một góc 60o Tính thể tích khối chóp. Đs: 
Bài 3: Cho khối chóp SABCD có đáy ABCD là hình chữ nhật biết rằng 
SA (ABCD) , SC hợp với đáy một góc 45o và AB = 3a , BC = 4a
Tính thể tích khối chóp. Đs: V = 20a3
 Bài 4: Cho khối chóp SABCD có đáy ABCD là hình thoi cạnh a và góc nhọn A 
 bằng 60o và SA (ABCD) ,biết rằng khoảng cách từ A đến cạnh SC = a.
 Tính thể tích khối chóp SABCD. Đs: 
2) Dạng 2 : Khối chóp có một mặt bên vuông góc với đáy
 Ví dụ 1: Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh a. Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáyABCD. 
 1) Chứng minh rằng chân đường cao khối chóp trùng với trung điểm cạnh AB.
2) Tính thể tích khối chóp SABCD.
Ví dụ 2: Cho tứ diện ABCD có ABC là tam giác đều ,BCD là tam giác vuông cân tại D , (ABC)(BCD) và AD hợp với (BCD) một góc 60o. Tính thể tích tứ diện ABCD.
Lời giải:
Gọi H là trung điểm của BC.
Ta có tam giác ABC đều nên AH(BCD) , mà (ABC) (BCD) AH .
Ta có AHHDAH = AD.tan60o =
& HD = AD.cot60o =
BC = 2HD = suy ra
 V = 
Ví dụ 3: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, có BC = a. Mặt bên SAC vuông góc với đáy, các mặt bên còn lại đều tạo với mặt đáy một góc 450.
Chứng minh rằng chân đường cao khối chóp trùng với trung điểm cạnh AC.
Tính thể tích khối chóp SABC.
Lời giải:
 a) Kẻ SH BC vì mp(SAC)mp(ABC) nên SHmp(ABC). 
Gọi I, J là hình chiếu của H trên AB và BC SIAB, SJBC, theo giả thiết 
Ta có: nên BH là đường phân giác của ừ đó suy ra H là trung điểm của AC.
b) HI = HJ = SH =VSABC=
Bài tập: 
Bài 1: Cho hình chóp SABC có đáy ABC đều cạnh a, tam giác SBC cân tại 
 S và nằm trong mặt phẳng vuông góc với (ABC).
Chứng minh chân đường cao của chóp là trung điểm của BC.
Tính thể tích khối chóp SABC. Đs: 
Bài 2: Cho hình chóp SABC có đáy ABC vuông cân tại A với AB = AC = a biết tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với (ABC) ,mặt phẳng (SAC) hợp với (ABC) một góc 45o. Tính thể tích của SABC. Đs: 
Bài 3: Cho hình chóp SABC có ; SBC là tam giác đều cạnh a và (SAB) (ABC). Tính thể tích khối chóp SABC. Đs: 
3) Dạng 3 : Khối chóp đều
Ví dụ 1: Cho chóp tam giác đều SABC cạnh đáy bằng a và cạnh bên bằng 2a. Chứng minh rằng chân đường cao kẻ từ S của hình chóp là tâm của tam giác đều ABC.Tính thể tích chóp đều SABC .	
Ví dụ 2:Cho khối chóp tứ giác SABCD có tất cả các cạnh có độ dài bằng a . 
	1) Chứng minh rằng SABCD là chóp tứ giác đều.
	2) Tính thể tích khối chóp SABCD.
Ví dụ 3: Cho khối tứ diện đều ABCD cạnh bằng a, M là trung điểm DC. 
Tính thể tích khối tứ diện đều ABCD.
b)Tính khoảng cách từ M đến mp(ABC). Suy ra thể tích hình chóp MABC.
Lời giải:
a) Gọi O là tâm của 
 , 
b) Kẻ MH// DO, khoảng cách từ M đến mp(ABC) là MH
Vậy 
Bài tập: 
Bài 1: Cho hình chóp đều SABC có cạnh bên bằng a hợp với đáy ABC một góc 	60o . Tính thể tích hình chóp. Đs: 
Bài 2: Cho hình chóp tam giác đều SABC có cạnh bên a, góc ở đáy của mặt bên 
 là 45o.
	1) Tính độ dài chiều cao SH của chóp SABC . Đs: SH = 
	2) Tính thể tích hình chóp SABC. Đs: 
Bài 3: Cho hình chóp tam giác đều SABC có cạnh đáy a và mặt bên hợp với đáy 
 một góc 60o. Tính thể tích hình chóp SABC. Đs: 
4) Dạng 4 : Khối chóp & phương pháp tỷ số thể tích
Ví dụ 1: Cho hình chóp S.ABC có tam giác ABC vuông cân ở B, , SA vuông góc với đáy ABC , 
	1) Tính thể tích của khối chóp S.ABC.
	2) Gọi G là trọng tâm tam giác ABC, mặt phẳng () qua AG và song song 
 với BC cắt SC, SB lần lượt tại M, N. Tính thể tích của khối chóp S.AMN
Lời giải:
a)Ta có: và 
 + 
Vậy: 
b) Gọi I là trung điểm BC.
 G là trọng tâm,ta có : 
 // BC MN// BC 
 Vậy: 
Ví dụ 2: Cho tam giác ABC vuông cân ở A và . Trên đường thẳng qua C và vuông góc với mặt phẳng (ABC) lấy điểm D sao cho . Mặt phẳng qua C vuông góc với BD, cắt BD tại F và cắt AD tại E.
Tính thể tích khối tứ diện ABCD.
Chứng minh 
Tính thể tích khối tứ diện CDEF
Lời giải:
a) Tính : 
b) Tacó: 
c) Tính :Ta có: 
 Mà , chia cho 
 Tương tự: 
 Từ (*) .Vậy 
Ví dụ 3: Cho khối chóp tứ giác đều SABCD. Một mặt phẳng qua A, B và trung điểm M của SC . Tính tỉ số thể tích của hai phần khối chóp bị phân chia bởi mặt phẳng đó.
Lời giải:
Kẻ MN // CD (N thì hình thang ABMN là thiết diện của khối chóp khi cắt bởi mặt phẳng (ABM).
 + Mà VSABMN = VSANB + VSBMN = . 
Suy ra VABMN.ABCD =
 Do đó : 
Ví dụ 4: Cho hình chóp tứ giác đều S.ABCD, đáy là hình vuông cạnh a, cạnh bên tạo với đáy góc . Gọi M là trung điểm SC. Mặt phẳng đi qua AM và song song với BD, cắt SB tại E và cắt SD tại F. 
Hãy xác định mp(AEMF)
Tính thể tích khối chóp S.ABCD
Tính thể tích khối chóp S.AEMF
Lời giải:
a) Gọi . Ta có (AEMF) //BD EF // BD
b) với 
 + có : 
 Vậy : 
c) Phân chia chóp tứ giác ta có
= VSAMF + VSAME =2VSAMF
 = 2VSACD = 2 VSABC
Xét khối chóp S.AMF và S.ACD 
 Ta có : 
 có trọng tâm I, EF // BD nên:
Ví dụ 5: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc đáy, . Gọi B’, D’ là hình chiếu của A lần lượt lên SB, SD. Mặt phẳng (AB’D’) cắt SC tại C’.
Tính thể tích khối chóp S.ABCD.
 Chứng minh 
Tính thể tích khối chóp S.AB’C’D’
Lời giải:
a) Ta có: 
b) Ta có 
 & Suy ra:
 nên AB'SC .Tương tự AD'SC.
 Vậy SC (AB'D')
c) Tính 
 + Tính : Ta có: 
 vuông cân nên 
 Ta có: 
 Từ
+ 
Bài tập: 
Bài 1: Cho tứ diên ABCD. Gọi B' và C' lần lượt là trung điểm của AB và AC. Tính tỉ số thể tích của khối tứ diện AB'C'D và khối tứ diên ABCD. Đs: 
Bài 2: Cho tứ diên ABCD có thể tích 9m3 ,trên AB,AC,AD lần lượt lấy các điểm B',C',D' sao cho AB = 2AB' ;2AC = 3AD' ;AD = 3AD'. Tính tể tích tứ diện AB'C'D'. Đs: V = 2 m3
Bài 3: Cho tứ diên đều ABCD có cạnh a. Lấy các điểm B';C' trên AB và AC sao cho . Tính thể tích tứ diên AB'C'D . Đs: 
5) Dạng 5 : Ôn tập khối chóp và lăng trụ
Ví dụ 1: Cho hình chóp S.ABCD có ABCD là hình vuông cạnh 2a, SA vuông góc đáy. Góc giữa SC và đáy bằng và M là trung điểm của SB.
	1) Tính thể tích của khối chóp S.ABCD.
	2) Tính thể tích của khối chóp MBCD.
. 
Lời giải:
a)Ta có 
 + 
 + 
b) Kẻ 
 Ta có: , 
Ví dụ 2: Cho hình hộp chữ nhật ABCD.A’B’C’D’ có , AD = a, AA’ = a, O là giao điểm của AC và BD.
Tính thể tích khối hộp chữ nhật, khối chóp OA’B’C’D’
Tính thể tích khối OBB’C’.
Tính độ dài đường cao đỉnh C’ của tứ diện OBB’C’.
Lời giải:
a) Gọi thể tích khối hộp chữ nhật là V.
 Ta có :
 * Khối OA’B’C’D’ có đáy và đường cao giống khối hộp nên: 
b) M là trung điểm BC 
c) Gọi C’H là đường cao đỉnh C’ của tứ 
diện OBB’C’. Ta có : 
Ví dụ 3: Cho hình lập phương ABCD.A’B’C’D’có cạnh bằng a. Tính thể tích khối tứ diện ACB’D’.
Lời giải:
Hình lập phương được chia thành: khối ACB’D’ và bốn khối CB’D’C’, BB’AC, D’ACD, AB’A’D’.
+ Các khối CB’D’C’, BB’AC, D’ACD, AB’A’D’ có diện tích đáy và chiều cao bằng nhau nên có cùng thể tích.
 Khối CB’D’C’ có 
+ Khối lập phương có thể tích: 
Ví dụ 4: Cho hình lăng trụ đứng tam giác có các cạnh bằng a.
Tính thể tích khối tứ diện A’B’ BC.
E là trung điểm cạnh AC, mp(A’B’E) cắt BC tại F. Tính thể tích khối CA’B’FE.
Lời giải:
a) Khối A’B’ BC:Gọi I là trung điểm AB, 
b) Khối CA’B’FE: phân ra hai khối CEFA’ và CFA’B’.
+ Khối A’CEFcó đáy là CEF, đường cao A’A nên 
+ Gọi J là trung điểm B’C’. Ta có khối A’B’CF có đáy là CFB’, đường cao JA’ nên 
+ Vậy : 
Bài tập: 
Bài 1: Cho lăng trụ đứng ABCA1B1C1 có ABC vuông. AB = AC = a; AA1 = a. M là trung điểm AA1. Tính thể tích lăng trụ MA1BC1 Đs:V = 
Bài 2: Hình chóp SABCD có ∆ABC vuông tại B, SA(ABC). = 60o, 
BC = a, SA = a,M là trung điểm SB.Tính thể tích MABC . Đs: VMABC = 
Các bài toán thi TN - CĐ - TSĐH các năm từ 2012 đến 2014.
Bài 1. (TN-2014)
Cho hình chóp có đáy là tam giác vuông cân tại và . Hình chiếu vuông góc của trên mặt phẳng là trung điểm của cạnh . Góc giữa đường thẳng và bằng . Tính thể tích của khối chóp theo .
Đáp án
Bài 2. (CĐ-2014)
Cho hình chóp có đáy là hình vuông cạnh , vuông góc với đáy. tạo với đáy một góc bằng . 
Tính theo thể tích của khối chóp .
Tính theo khoảng cách từ điểm đến mặt phẳng .
Đáp án
Bài 3. (ĐH-K.D-2014)
Cho hình chóp có đáy là tam giác vuông cân tại , mặt bên là tam giác đều cạnh và mặt phẳng vuông góc với mặt đáy. 
Tính theo thể tích của khối chóp 
Tính theo khoảng cách giữa hai đường thẳng 
Đáp án HK là đường vuông góc chung của BC,SA
Bài 5. (ĐH-K.A-2014)
Cho hình chóp có đáy là hình vuông cạnh , , hình chiếu vuông góc của trên mặt phẳng là trung điểm của cạnh .
Tính theo thể tích của khối chóp .
Tính theo khoảng cách từ điểm đến mặt phẳng .
Đáp án
Bài 5. (TN-2013)
Đáp án
Bài 5. (CĐ-2013)
Đáp án
Bài 5. (ĐH-K.A-2013)
Đáp án
Bài 5. (ĐH-K.B-2013)
Đáp án
Bài 5. (ĐH-K.D-2013)
Đáp án
Bài 5. (TN-2012)
Đáp án 
-------------------------------Hết------------------------------

Tài liệu đính kèm:

  • doctai_lieu_on_thi_thpt_quoc_gia_nam_hoc_20152016.doc