Phương trình chứa ẩn trong dấu giá trị tuyệt đối

docx 4 trang Người đăng khoa-nguyen Lượt xem 7655Lượt tải 4 Download
Bạn đang xem tài liệu "Phương trình chứa ẩn trong dấu giá trị tuyệt đối", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Phương trình chứa ẩn trong dấu giá trị tuyệt đối
I. PHƯƠNG TRÌNH CHỨA ẨN TRONG DẤU 
GIÁ TRỊ TUYỆT ĐỐI
1. Định nghĩa và tính chất 
	· 	· 
	· 	· 
	· 	· 
	· 	· 
2. Cách giải
	Để giải phương trình chứa ẩn trong dấu GTTĐ ta tìm cách để khử dấu GTTĐ, bằng cách:
	– Dùng định nghĩa hoặc tính chất của GTTĐ.
	– Bình phương hai vế.
	– Đặt ẩn phụ.	
	· Dạng 1: 	 
	· Dạng 2:	 
	· Dạng 3: 	
	Đối với phương trình có dạng này ta thường dùng phương pháp khoảng để giải.
Giải các phương trình sau:
	a) 	b) 	c) 
	d) 	e) 	f) 
	g) 	h) 	i) 
Giải các phương trình sau:
	a) 	b) 	c) 
	d) 	e) 	f) 
Giải các phương trình sau:
	a) 	b) 	c) 
	d) 	e) 	f) 
Giải và biện luận các phương trình sau:
	a) 	b) 	c) 
	d) 	e) 	f) 
V. PHƯƠNG TRÌNH CHỨA ẨN DƯỚI DẤU CĂN
Cách giải: Để giải phương trình chứa ẩn dưới dấu căn ta tìm cách để khử dấu căn, bằng cách:
	– Nâng luỹ thừa hai vế.
	– Đặt ẩn phụ.
	Chú ý: Khi thực hiện các phép biến đổi cần chú ý điều kiện để các căn được xác định.
Dạng 1:	 Û 
Dạng 2: 	
Dạng 3:	 Û 
Dạng 4:	
	· Đặt với u, v ³ 0. 
	· Đưa phương trình trên về hệ phương trình với hai ẩn là u và v.
Dạng 5:	
	Đặt .
Giải các phương trình sau:
	a) 	b) 	c) 
	d) 	e) 	f)
	g) 	h) 	i) 
Giải các phương trình sau:
	a) 	b) 
	c) 	d) 
	e) 	f) 
Giải các phương trình sau:
	a) 	b) 
	c) 	d) 
	e) 	f) 
	g) 	h) 
Giải các phương trình sau:
	a) 	b) 
	c) 	d) 
	e) 	f) 
	g) 	h) 
Giải các phương trình sau:
	a) 
	b) 
	c) 
VI. PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU THỨC 
Cách giải: Khi giải phương trình chứa ẩn ở mẫu thức, ta phải chú ý đến điều kiện xác định của phương trình (mẫu thức khác 0).
Giải các phương trình sau:
	a) 	b) 
	c) 	d) 
	e) 	f) 
Giải và biện luận các phương trình sau:
	a) 	b) 	c) 
	d) 	e) 	f) 
VII. PHƯƠNG TRÌNH TRÙNG PHƯƠNG 
ax4 + bx2 + c = 0 (a ¹ 0)
1. Cách giải: 
2. Số nghiệm của phương trình trùng phương
	Để xác định số nghiệm của (1) ta dựa vào số nghiệm của (2) và dấu của chúng.
	· (1) vô nghiệm	Û 
	· (1) có 1 nghiệm Û 
	· (1) có 2 nghiệm Û 
	· (1) có 3 nghiệm Û 
	· (1) có 4 nghiệm Û 
3. Một số dạng khác về phương trình bậc bốn
	· Dạng 1:	
	– Đặt 
	– PT trở thành: 	
	· Dạng 2:	
	– Đặt 	 Þ 
	– PT trở thành:	
	· Dạng 3: 	(phương trình đối xứng)
	– Vì x = 0 không là nghiệm nên chia hai vế của phương trình cho , ta được:
	PT Û 	(2)
	– Đặt	 với .
	– PT (2) trở thành:	.
Giải các phương trình sau:
	a) 	b) 	c) 
	d) 	e) 	f) 
Tìm m để phương trình:
	i) Vô nghiệm	ii) Có 1 nghiệm	iii) Có 2 nghiệm	
	iv) Có 3 nghiệm	v) Có 4 nghiệm
	a) 	b) 
	c) 
Giải các phương trình sau:
	a) 	b) 
	c) 	d) 
	e) 	f) 
	g) 

Tài liệu đính kèm:

  • docxphương trinh chuong 3.docx