LUYỆN CÁC BÀI TOÁN ỨNG DỤNG Nhóm 1: Bài toán về quãng đường Một công ty muốn làm một đường ống dẫn từ một điểm A trên bờ đến một điểm B trên một hòn đảo. Hòn đảo cách bờ biển 6km. Giá để xây đường ống trên bờ là 50.000USD mỗi km, và 130.000USD mỗi km để xây dưới nước. B’ là điểm trên bờ biển sao cho BB’ vuông góc với bờ biển. Khoảng cách từ A đến B’ là 9km. Vị trí C trên đoạn AB’ sao cho khi nối ống theo ACB thì số tiền ít nhất. Khi đó C cách A một đoạn bằng: A. 6.5km B. 6km C. 0km D.9km Hướng dẫn giải Đặt Chi phí xây dựng đường ống là Hàm , xác định, liên tục trên và ; ; Vậy chi phí thấp nhất khi . Vậy C cần cách A một khoảng 6,5km. Một ngọn hải đăng đặt tại vị trí có khoảng cách đến bờ biển .Trên bờ biển có một cái kho ở vị trí cách một khoảng .Người canh hải đăng có thể chèo đò từ đến trên bờ biểnvới vận tốc rồi đi bộ đến với vận tốc .Vị trí của điểm cách B một khoảng bao nhiêu để người đó đi đến kho nhanh nhất? A. B. C. D. Hướng dẫn giải Đặt . Ta có: Thời gian chèo đò từ đến là: Thời gian đi bộ đi bộ đến là: Thời gian từ đến kho Khi đó: , cho Lập bảng biến thiên, ta thấy thời gian đến kho nhanh nhất khi Đường dây điện 110KV kéo từ trạm phát (điểm A) trong đất liền ra Côn Đảo (điểm C). biết khoảng cách ngắn nhất từ C đến B là 60km, khoảng cách từ A đến B là 100km, mỗi km dây điện dưới nước chi phí là 5000 USD, chi phí cho mỗi km dây điện trên bờ là 3000 USD. Hỏi điểm G cách A bao nhiêu để mắc dây điện từ A đến G rồi từ G đến C chi phí ít nhất. A: 40km B: 45km C: 55km D: 60km Hướng dẫn giải Gọi Ta có Chi phí mắc dây điện: Khảo sát hàm ta được: . Chọn B. O A C B 1,4 1,8 Một màn ảnh chữ nhật cao 1,4 mét được đặt ở độ cao 1,8 mét so với tầm mắt (tính từ đầu mép dưới của màn hình). Để nhìn rõ nhất phải xác định vị trí đứng sao cho góc nhìn lớn nhất. Hãy xác định vị trí đó ? ( gọi là góc nhìn) A. B. C. D. Hướng dẫn giải Với bài toán này ta cần xác định OA để góc BOC lớn nhất. Điều này xảy ra khi và chỉ khi tanBOC lớn nhất. Đặt OA = x (m) với x > 0, ta có tanBOC = tan(AOC - AOB) = = = = Xét hàm số f(x) = 0 f(x) + 2,4 + _ 0 0 0 x f'(x) Bài toán trở thành tìm x > 0 để f(x) đạt giá trị lớn nhất. Ta có f'(x) =, f'(x) = 0 x = 2,4 Ta có bảng biến thiên Vậy vị trí đứng cho góc nhìn lớn nhất là cách màn ảnh 2,4m. A B C D E h Từ cảng A dọc theo đường sắt AB cần phải xác định một trạm trung chuyển hàng hóa C và xây dựng một con đường từ C đến D. Biết rằng vận tốc trên đường sắt là v1 và trên đường bộ là v2 (v1< v2). Hãy xác định phương án chọn địa điểm C để thời gian vận chuyển hàng từ cảng A đến cảng D là ngắn nhất? Hướng dẫn giải Gọi t là thời gian vận chuyển hàng hóa từ cảng A đến cảng D. A C D E h a B Thời gian t là: t = = = = = A B A1 B1 d Xét hàm số . Ứng dụng Đạo hàm ta được nhỏ nhất khi . Vậy để t nhỏ nhất ta chọn C sao cho . Hai con tàu đang ở cùng một vĩ tuyến và cách nhau 5 hải lý. Đồng thời cả hai tàu cùng khởi hành, một chạy về hướng Nam với 6 hải lý/giờ, còn tàu kia chạy về vị trí hiện tại của tàu thứ nhất với vận tốc 7 hải lý/ giờ. Hãy xác định mà thời điểm mà khoảng cách của hai tàu là lớn nhất? Hướng dẫn giải A B A1 B1 d Tại thời điểm t sau khi xuất phát, khoảng cách giữa hai tàu là d. Ta có d2 = AB12 + AA12 = (5 - BB1)2 + AA12 = (5 - 7.t)2 + (6t)2 Suy ra d = d(t) = . Áp dụng Đạo hàm ta được d nhỏ nhất khi (giờ), khi đó ta có d3,25 Hải lý. Nhóm 2: Bài toán diện tích hình phẳng Cho hình chữ nhật có diện tích bằng . Hỏi mỗi kích thước của nó bằng bao nhiêu để chu vi của nó nhỏ nhất? A. B. C. D. Đáp án khác Hướng dẫn giải Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là: và Chu vi hình chữ nhật là: Theo đề bài thì: hay . Do đó: với Đạo hàm: . Cho . Lập bảng biến thiên ta được: khi . Kết luận: Kích thước của hình chữ nhật là (là hình vuông). Lưu ý: Có thể đánh giá bằng BĐT Cô-Sy: Một lão nông chia đất cho con trai để người con canh tác riêng, biết người con sẽ được chọn miếng đất hình chữ nhật có chu vi bằng . Hỏi anh ta chọn mỗi kích thước của nó bằng bao nhiêu để diện tích canh tác lớn nhất? A. B. C. D.Đáp án khác Hướng dẫn giải Gọi chiều dài và chiều rộng của miếng đất lần lượt là: và Diện tích miếng đất: Theo đề bài thì: hay . Do đó: với Đạo hàm: . Cho . Lập bảng biến thiên ta được: khi . Kết luận: Kích thước của miếng đất hình chữ nhật là (là hình vuông). Lưu ý: Có thể đánh giá bằng BĐT Cô-Sy. Người ta muốn rào quanh một khu đất với một số vật liệu cho trước là mét thẳng hàng rào. Ở đó người ta tận dụng một bờ giậu có sẵn để làm một cạnh của hàng rào và rào thành mảnh đất hình chữ nhật. Hỏi mảnh đất hình chữ nhật được rào có diện tích lớn nhất bằng bao nhiêu? A. B. C. D. Hướng dẫn giải Gọi là chiều dài cạnh song song với bờ giậu và là chiều dài cạnh vuông góc với bờ giậu, theo bài ra ta có . Diện tích của miếng đất là . Ta có: Dấu xảy ra . Vậy khi . x y Trong lĩnh vực thuỷ lợi, cần phải xây dựng nhiều mương dẫn nước dạng "Thuỷ động học" (Ký hiệu diện tích tiết diện ngang của mương là S, là độ dài đường biên giới hạn của tiết diện này,- đặc trưng cho khả năng thấm nước của mương; mương đựơc gọi là có dạng thuỷ động học nếu với S xác định, là nhỏ nhất). Cần xác định các kích thước của mương dẫn nước như thế nào để có dạng thuỷ động học? (nếu mương dẫn nước có tiết diện ngang là hình chữ nhật) A. B. C. D. Hướng dẫn giải Gọi x, y lần lượt là chiều rộng, chiều cao của mương. Theo bài ra ta có: S = xy; . Xét hàm số . Ta có = + 1 = . = 0 , khi đó y = = . Dễ thấy với x, y như trên thì mương có dạng thuỷ động học, vậy các kích thước của mương là , y = thì mương có dạng thuỷ động học. 2x S1 S2 Cần phải làm cái cửa sổ mà, phía trên là hình bán nguyệt, phía dưới là hình chữ nhật, có chu vi là ( chính là chu vi hình bán nguyệt cộng với chu vi hình chữ nhật trừ đi độ dài cạnh hình chữ nhật là dây cung của hình bán nguyệt). Hãy xác định các kích thước của nó để diện tích cửa sổ là lớn nhất? A. chiều rộng bằng, chiều cao bằng B. chiều rộng bằng, chiều cao bằng C. chiều rộng bằng, chiều cao bằng D. Đáp án khác Hướng dẫn giải Gọi là bán kính của hình bán nguyệt. Ta có chu vi của hình bán nguyệt là , tổng ba cạnh của hình chữ nhật là . Diện tích cửa sổ là: . Dễ thấy lớn nhất khi hay .(Có thể dùng đạo hàm hoặc đỉnh Parabol) Vậy để thì các kích thước của nó là: chiều cao bằng; chiều rộng bằng y x x Người ta muốn làm một cánh diều hình quạt sao cho với chu vi cho trước là sao cho diện tích của hình quạt là cực đại. Dạng của quạt này phải như thế nào? A. B. C. D.Đáp án khác Hướng dẫn giải Gọi là bán kính hình quạt, là độ dài cung tròn. Ta có chu vi cánh diều là . Ta cần tìm mối liên hệ giữa độ dài cung tròn y và bán kính sao cho diện tích quạt lớn nhất. Dựa vào công thức tính diện tích hình quạt là và độ dài cung tròn, ta có diện tích hình quạt là: . Vận dụng trong bài toán nàydiện tích cánh diều là: . Dễ thấy cực đại . Như vậy với chu vi cho trước, diện tích của hình quạt cực đại khi bán kính của nó bằng nửa độ dài cung tròn. Có một tấm gỗ hình vuông cạnh 200 cm. Cắt một tấm gỗ có hình tam giác vuông, có tổng của một cạnh góc vuông và cạnh huyền bằng hằng số từ tấm gỗ trên sao cho tấm gỗ hình tam giác vuông có diện tích lớn nhất. Hỏi cạnh huyền của tấm gỗ này là bao nhiêu? A. . B. . C. . D. . Hướng dẫn giải Kí hiệu cạnh góc vuông Khi đó cạnh huyền , cạnh góc vuông kia là Diện tích tam giác ABC là: . Ta tìm giá trị lớn nhất của hàm số này trên khoảng Ta có Lập bảng biến thiên ta có: Tam giác ABC có diện tích lớn nhất khi Từ đó chọn đáp án C Tìm diện tích lớn nhất của hình chữ nhật nội tiếp trong nửa đường tròn bán kính , biết một cạnh của hình chữ nhật nằm dọc trên đường kính của đường tròn. A. B. C. D. Hướng dẫn giải Gọi là độ dài cạnh hình chữ nhật không nằm dọc theo đường kính đường tròn . Khi đó độ dài cạnh hình chữ nhật nằm dọc trên đường tròn là: Diện tích hình chữ nhật: Ta có . Suy ra là điểm cực đại của hàm . Vậy diện tích lớn nhất của hình chữ nhật là: Một máy tính được lập trình để vẽ một chuỗi các hình chữ nhật ở góc phần tư thứ nhất của trục tọa độ Oxy , nội tiếp dưới đường cong y=e-x. Hỏi diện tích lớn nhất của hình chữ nhật có thể được vẽ bằng cách lập trình trên A. 0,3679 ( đvdt) B. 0,3976 (đvdt) C. 0,1353( đvdt) D 0,5313( đvdt) Hướng dẫn giải Diện tích hình chữ nhật tại điểm x là S = xe-x Dựa vào bảng biến thiên ta có Smax = khi x=1 Đáp án A Cho một tấm nhôm hình vuông cạnh 6 cm. Người ta muốn cắt một hình thang như hình vẽ. Tìm tổng x + y để diện tích hình thang EFGH đạt giá trị nhỏ nhất. A. 7 B. 5 C. D. . Hướng dẫn giải Ta có nhỏ nhất lớn nhất. Tính được (1) Mặt khác đồng dạng nên (2) Từ (1) và (2) suy ra . Ta có 2S lớn nhất khi và chỉ khi nhỏ nhất. Biểu thức nhỏ nhất . Vậy đáp án cần chọn là C. Nhóm 3: Bài toán liên hệ diện tích, thể tích (ĐMH)Có một tấm nhôm hình vuông cạnh Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một cái hộp không nắp. Tìm để hình hộp nhận được có thể tích lớn nhất. A. B. C. D. Hướng dẫn giải Độ dài cạnh đáy của cái hộp: Diện tích đáy của cái hộp: . Thể tích cái hộp là: với Ta có: Cho , giải và chọn nghiệm Lập bảng biến thiên ta được khi Một Bác nông dân cần xây dựng một hố ga không có nắp dạng hình hộp chữ nhật có thể tích , tỉ số giữa chiều cao của hố và chiều rộng của đáy bằng . Hãy xác định diện tích của đáy hố ga để khi xây tiết kiệm nguyên vật liệu nhất? A. B. C. D. Hướng dẫn giải Gọi lần lượt là chiều rộng, chiều dài của đáy hố ga. Gọi là chiều cao của hố ga (). Ta có suy ra thể tích của hố ga là : Diện tích toàn phần của hố ga là: Khảo sát hàm số suy ra diện tích toàn phần của hố ga nhỏ nhất bằng khi Suy ra diện tích đáy của hố ga là Người ta phải cưa một thân cây hình trụ có đường kính , chiều dài để được một cây xà hình khối chữ nhật như hình vẽ. Hỏi thể tích cực đại của khối gỗ sau khi cưa xong là bao nhiêu? Hướng dẫn giải Gọi là các cạnh của tiết diện. Theo Định lí Pitago ta có: (đường kính của thân cây là ). Thể tích của cây xà sẽ cực đại khi diện tích của tiết diện là cực đại, nghĩa là khi cực đại. Ta có: Dấu xảy ra khi . Thể tích khối gỗ sau khi cưa xong: (tiết diện là hình vuông). Bạn An là một học sinh lớp 12, bố bạn là một thợ hàn. Bố bạn định làm một chiếc thùng hình trụ từ một mảnh tôn có chu vi 120 cm theo cách dưới đây: Bằng kiến thức đã học em giúp bố bạn chọn mảnh tôn để làm được chiếc thùng có thể tích lớn nhất, khi đó chiều dài, rộng của mảnh tôn lần lượt là: A. B. C. D. Hướng dẫn giải Gọi một chiều dài là , khi đó chiều còn lại là , giả sử quấn cạnh có chiều dài là x lại thì bán kính đáy là Ta có: Xét hàm số: Lập bảng biến thiên, ta thấy lớn nhất khi x=40. 60-x=20. Khi đó chiều dài là 40 cm; chiều rộng là 20 cm. Chọn đáp án B Một xưởng cơ khí nhận làm những chiếc thùng phi với thể tích theo yêu cầu là lít mỗi chiếc. Hỏi bán kính đáy và chiều cao của thùng lần lượt bằng bao nhiêu để tiết kiệm vật liệu nhất? A. và B. và C. và D. và Hướng dẫn giải Đổi . Gọi bán kính đáy và chiều cao lần lượt là và . Ta có thể tích thùng phi Vật liệu tỉ lệ thuận với diện tích toàn phần nên ta chỉ cần tìm để diện tích toàn phần bé nhất. Đạo hàm lập BBT ta tìm đc GTNN tại , khi đó Với một miếng tôn hình tròn có bán kính bằng R = 6cm. Người ta muốn làm một cái phễu bằng cách cắt đi một hình quạt của hình tròn này và gấp phần còn lại thành hình nón ( Như hình vẽ). Hình nón có thể tích lớn nhất khi người ta cắt cung tròn của hình quạt bằng A. cm B. cm C.cm D. cm Hướng dẫn giải Gọi x (x>0) là chiều dài cung tròn của phần được xếp làm hình nón. Như vậy, bán kính R của hình tròn sẽ là đường sinh của hình nón và đường tròn đáy của hình nón sẽ có độ dài là x. Bán kính r của đáy được xác định bởi đẳng thức . Chiều cao của hình nón tính theo Định lý Pitago là: h = . Thể tích của khối nón: . Áp dụng Bất đẳng thức Côsi ta có: Do đó V lớn nhất khi và chỉ khi (Lưu ý bài toán có thể sử dụng đạo hàm để tìm giá trị lớn nhất, tuy nhiên lời giải bài toán sẽ dài hơn) Với một đĩa tròn bằng thép tráng có bán kính phải làm một cái phễu bằng cách cắt đi một hình quạt của đĩa này và gấp phần còn lại thành hình tròn. Cung tròn của hình quạt bị cắt đi phải bằng bao nhiêu độ để hình nón có thể tích cực đại? A. B. C. D. Hướng dẫn giải Ta có thể nhận thấy đường sinh của hình nón là bán kính của đĩa tròn. Còn chu vi đáy của hình nón chính là chu vi của đĩa trừ đi độ dài cung tròn đã cắt. Như vậy ta tiến hành giải chi tiết như sau: Gọi là độ dài đáy của hình nón (phần còn lại sau khi cắt cung hình quạt của dĩa). Khi đó Chiều cao của hình nón tính theo định lí PITAGO là Thể tích khối nón sẽ là : Đến đây các em đạo hàm hàm tìm được GTLN của đạt được khi Suy ra độ dài cung tròn bị cắt đi là : Nhà Nam có một chiếc bàn tròn có bán kính bằng m. Nam muốn mắc một bóng điện ở phía trên và chính giữa chiếc bàn sao cho mép bàn nhận được nhiều ánh sáng nhất. Biết rằng cường độ sáng C của bóng điện được biểu thị bởi công thức (là góc tạo bởi tia sáng tới mép bàn và mặt bàn, c - hằng số tỷ lệ chỉ phụ thuộc vào nguồn sáng, l khoảng cách từ mép bàn tới bóng điện) . Khoảng cách nam cần treo bóng điện tính từ mặt bàn là A. 1m B. 1,2m C. 1.5 m D. 2m Hướng dẫn giải Gọi h là độ cao của bóng điện so với mặt bàn (h > 0); Đ là bóng điện; I là hình chiếu của Đ lên mặt bàn. MN là đường kính của mặt bàn.( như hình vẽ) Ta có và , suy ra cường độ sáng là: . Lập bảng biến thiên ta thu được kết quả C lớn nhất khi , khi đó Nhân ngày phụ nữ Việt Nam 20 -10 năm 2017 , ông A quyết định mua tặng vợ một món quà và đặt nó vào trong một chiếc hộp có thể tích là 32 ( đvtt ) có đáy hình vuông và không có nắp . Để món quà trở nên thật đặc biệt và xứng đáng với giá trị của nó ông quyết định mạ vàng cho chiếc hộp , biết rằng độ dạy lớp mạ tại mọi điểm trên hộp là như nhau . Gọi chiều cao và cạnh đáy của chiếc hộp lần lượt là . Để lượng vàng trên hộp là nhỏ nhất thì giá trị của phải là ? A. B. C. D. Hướng dẫn giải Ta có , để lượng vàng cần dùng là nhỏ nhất thì Diện tích S phải nhỏ nhất ta có , Chọn đáp án B Một người có một dải ruy băng dài 130cm, người đó cần bọc dải ruy băng đó quanh một hộp quà hình trụ. Khi bọc quà, người này dùng 10cm của dải ruy băng để thắt nơ ở trên nắp hộp (như hình vẽ minh họa). Hỏi dải dây duy băng có thể bọc được hộp quà có thể tích lớn nhất là là nhiêu ? A. B. C. D. Hướng dẫn giải Gọi lần lượt là bán kính đáy và chiều của hình trụ . Dải dây duy băng còn lại khi đã thắt nơ là: Ta có Thể tích khối hộp quà là: Thể tích V lớn nhất khi hàm số với đạt giá trị lớn nhất. , cho Lập bảng biến thiên, ta thấy thể tích đạt giá trị lớn nhất là . Có một miếng nhôm hình vuông, cạnh là 3dm, một người dự tính tạo thành các hình trụ (không đáy ) theo hai cách sau: Cách 1: gò hai mép hình vuông để thành mặt xung quanh của một hình trụ, gọi thể tích là của khối trụ đó là V1 Cách 2: cắt hình vuông ra làm ba, và gò thành mặt xung quanh của ba hình trụ, gọi tổng thể tích của chúng là V2. Khi đó, tỉ số là: A. 3 B. 2 C. D. Hướng dẫn giải .Gọi R1 là bán kính đáy của khối trụ thứ nhất, có . Gọi R1 là bán kính đáy của khối trụ thứ nhất, có Vậy đáp án là A. Cho hình chóp có đáy là hình bình hành và có thể tích là V . Điểm P là trung điểm của , một mặt phẳng qua AP cắt hai cạnh SD và SB lần lượt tại M và N .Gọi là thể tích của khối chóp . Tìm giá trị nhỏ nhất của ? A. B. C. D. Hướng dẫn giải Đặt khi đó ta có : Ta có : Lại có : Từ (1) và (2) suy ra : do Từ (2) suy ra Khảo sát hàm số Cho hình chóp có đáy là hình vuông cạnh vuông góc với mặt phẳng đáy và góc giữa với mặt phẳng bằng Gọi là điểm di động trên cạnh và là hình chiếu vuông góc của trên đường thẳng Khi điểm di động trên cạnh thì thể tích của khối chóp đạt giá trị lớn nhất bằng? A. B. C. D. Hướng dẫn giải Ta có góc giữa SC và mặt phẳng (SAB) là Trong tam giác SBC có Trong tam giác SAB có Thể tích khối chóp S.ABH là: Ta có và theo bất đẳng thức AM-GM ta có Đẳng thức xảy ra khi Khi đó Nhóm 4: Bài toán lãi suất ngân hàng Một người nọ đem gửi tiết kiệm ở một ngân hàng với lãi suất là 12% năm. Biết rằng cứ sau mỗi một quý ( 3 tháng ) thì lãi sẽ được cộng dồn vào vốn gốc. Hỏi sau tối thiểu bao nhiêu năm thì người đó nhận lại được số tiền, bao gồm cả vốn lẫn lãi gấp ba lần số tiền ban đầu. A. 8 B. 9 C. 10 D.11 Hướng dẫn giải Gọi số tiền người đó gửi là A, lãi suất mỗi quý là 0,03 Sau n quý, tiền mà người đó nhận được là: . Vậy số năm tối thiểu là xấp xỉ 9,29 năm. Vậy đáp án là C. Ông Năm gửi triệu đồng ở hai ngân hàng X và Y theo phương thức lãi kép. Số tiền thứ nhất gửi ở ngân hàng X với lãi suất một quý trong thời gian tháng. Số tiền còn lại gửi ở ngân hàng Y với lãi suất một tháng trong thời gian tháng. Tổng lợi tức đạt được ở hai ngân hàng là (chưa làm tròn). Hỏi số tiền ông Năm lần lượt gửi ở ngân hàng X và Y là bao nhiêu? A. triệu và triệu. B. triệu và triệu. C. triệu và triệu. D. triệu và triệu. Hướng dẫn giải Tổng số tiền cả vốn và lãi (lãi chính là lợi tức) ông Năm nhận được từ cả hai ngân hàng là triệu đồng. Gọi (triệu đồng) là số tiền gửi ở ngân hàng X, khi đó (triệu đồng) là số tiền gửi ở ngân hàng Y. Theo giả thiết ta có: Ta được . Vậy ông Năm gửi triệu ở ngân hàng X và triệu ở ngân hàng Y. Đáp án: A. Một bà mẹ Việt Nam anh hùng được hưởng số tiền là 4 triệu đồng trên một tháng (chuyển vào tại khoản của mẹ ở ngân hàng vào đầu tháng). Từ tháng 1 năm 2016 mẹ không đi rút tiền mà để lại ngân hàng và được tính lãi suất 1% trên một tháng. Đến đầu tháng 12 năm 2016 mẹ rút toàn bộ số tiền (gồm số tiền của tháng 12 và số tiền đã gửi từ tháng 1). Hỏi khi đó mẹ lĩnh về bao nhiêu tiền? (Kết quả làm tròn theo đơn vị nghìn đồng). A. 50 triệu 730 nghìn đồng B. 48 triệu 480 nghìn đồng C. 53 triệu 760 nghìn đồng D. 50 triệu 640 nghìn đồng Hướng dẫn giải Số tiền tháng 1 mẹ được nhận là 4 triệu, gửi đến đầu tháng 12 (được 11 kỳ hạn), vậy cả vốn lẫn lãi do số tiền tháng 1 nhận sinh ra là: (triệu đồng). Tương tự số tiền tháng 2 nhận sẽ sinh ra: (triệu đồng) ...................................................... Số tiền tháng 12 mẹ lĩnh luôn nên là: 4 (triệu đồng). Vậy tổng số tiền mẹ lĩnh là: (50 triệu 730 nghìn đồng). Đáp án A. Một Bác nông dân vừa bán một con trâu được số tiền là 20.000.000 (đồng) .Do chưa cần dùng đến số tiền nên Bác nông dân mang toàn bộ số tiền đó đi gửi tiết kiệm loại kỳ hạn 6 tháng vào ngân hàng với lãi suất 8.5% một năm thì sau 5 năm 8 tháng Bác nông dân nhận được bao nhiêu tiền cả vốn lẫn lãi .Biết rằng Bác nông dân đó không rút cả vốn lẫn lãi tất cả các định kì trước và nếu rút trước thời hạn thì ngân hàng trả lãi suất theo loại không kì hạn 0.01% một ngày (1 tháng tính 30 ngày) A. B. C. D. Hướng dẫn giải Một kì hạn 6 tháng có lãi suất là . Sau 5 năm 6 tháng (có nghĩa là 66 tháng tức là 11 kỳ hạn) , số tiền cả vốn lẫn lãi Bác nôn dân nhận được là : .Vì 5 năm 8 tháng thì có 11 kỳ hạn và dư 2 tháng hay dư 60 ngày nên số tiền A được tính lãi suất không kỳ hạn trong 60 ngày là : . Suy ra sau 5 năm 8 tháng số tiền bác nông dân nhận được là Bác B gửi tiết kiệm số tiền ban đầu là 20 triệu đồng theo kỳ hạn 3 tháng với lãi suất 0,72%/tháng. Sau một năm, bác B rút cả vốn lẫn lãi và gửi lại theo kỳ hạn 6 tháng với lãi suất 0,78%/tháng. Sau khi gửi được đúng một kỳ hạn 6 tháng do gia đình có việc nên bác gửi thêm một số tháng nữa thì phải rút tiền trước kỳ hạn cả gốc lẫn lãi được số tiền là 23263844,9 đồng (chưa làm tròn). Biết rằng khi rút tiền trước thời hạn lãi suất được tính theo lãi suất không kỳ hạn, tức tính theo hàng tháng. Trong một số tháng bác gửi thêm lãi suất là: A. 0,4% B. 0,3% C. 0,5% D. 0,6% Hướng dẫn giải . Gửi được 1 năm coi như gửi được 4 kỳ hạn 3 tháng; thêm một kỳ hạn 6 tháng số tiền khi đó là: . Giả sử lãi suất không kỳ hạn là A%; gửi thêm B tháng khi đó số tiền là: . Lưu ý: và B nguyên dương, nhập máy tính: t
Tài liệu đính kèm: