Hướng dẫn chấm thi giải toán trên máy tính cầm tay cấp tỉnh bậc thcs năm học 2010 – 2011 môn: Toán THCS

doc 5 trang Người đăng minhphuc19 Lượt xem 720Lượt tải 0 Download
Bạn đang xem tài liệu "Hướng dẫn chấm thi giải toán trên máy tính cầm tay cấp tỉnh bậc thcs năm học 2010 – 2011 môn: Toán THCS", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Hướng dẫn chấm thi giải toán trên máy tính cầm tay cấp tỉnh bậc thcs năm học 2010 – 2011 môn: Toán THCS
SỞ GIÁO DỤC VÀ ĐÀO TẠO
TUYấN QUANG
HƯỚNG DẪN CHẤM THI GIẢI TOÁN TRấN MÁY TÍNH CẦM TAY
CẤP TỈNH BẬC THCS NĂM HỌC 2010 – 2011
MễN: TOÁN THCS
Quy ước chấm: 
- Cỏc kết quả là phõn số, nếu khụng cú yờu cầu gỡ thờm ở mỗi bài, thỡ ghi dưới dạng phõn số tối giản. 
 Cỏc kết quả là số thập phõn, nếu khụng cú yờu cầu gỡ thờm ở mỗi bài thỡ lấy 05 chữ số thập phõn sau dấu phẩy.
- Cỏc bài toỏn yờu cầu trỡnh bày túm tắt cỏch giải mà lời giải sai hoặc khụng cú lời giải thỡ khụng cho điểm toàn bộ bài toỏn.
- Nếu kết quả ghi thiếu đơn vị thỡ trừ 0,5 điểm/1 lỗi. 
Bài 1. (5 điểm). Tớnh giỏ trị của cỏc biểu thức sau:
. 
Kết quả
A≃19,30669 (1,5đ)
B≃43,84417 (2đ)
C≃- 3.78144 (1,5đ)
Bài 2. (5 điểm).
	a) Cho gúc nhọn thoả món 2cos+sin=2 . Tớnh giỏ trị của biểu thức:
	b) Tớnh kết quả đỳng (khụng sai số) của tổng: 
	c) Tớnh tổng: 
Kết quả
D =3876,664	(1,5đ)
E=123321	(1,5đ)
F≃31730,34697 (2đ)
Bài 3. (5 điểm).
a) Tỡm thương và dư trong phộp chia 19962006201112012 chia cho 16012011?
b) Tỡm chữ số thập phõn thứ 20112019 sau dấu phẩy khi chia 13 cho 29?
c) Tỡm số cỏc ước dương của số 6227020800?
 Kết quả
a
Thương: 1246689513 (1đ)
 Dư: 5371369 (1đ)
b
Chữ số thập phõn thứ 2012019 sau dấu phẩy khi chia 13 cho 29 là: 5 (1,5đ)
c
Số cỏc ước dương của số 6227020800 là: 1584	(1,5đ)
Bài 4. (5 điểm) . 
a) Tìm x, biết: 
b) ễng A gửi tiết kiệm một số tiền ban đầu là 100 000 000 đồng vào ngõn hàng với lói suất kộp 0,8% một thỏng. Hỏi ụng A phải gửi số tiền trờn trong bao lõu thỡ được cả vốn lẫn lói là 130 000 000 đồng. Biờt rằng ụng A khụng rỳt lói ra ở tất cả cỏc thỏng trước đú?
Kết quả
a
x≃-0,21260	 (2,5đ)
b
Thời gian gửi tiền là: 33 thỏng	(2,5đ)
Bài 5. (5 điểm) Cho đa thức P(x) = x5 + ax4+ bx3 + cx2 + dx + e. Biết rằng P(x) cú nghiệm là x=1 và P(x) chia cho x+1 dư 16; chia cho x-2 dư 64; chia cho x+2 dư 84; chia cho x dư -2.
a) Xỏc định cỏc hệ số a, b, c, d, e của P(x).
b) Tớnh giỏ trị của P(x) với x =12; 14; 16; 18 .
c) Tỡm dư khi chia P(x) cho x - 3 và 2x+7?
Kết quả
Điểm
a
a=3
b=-4
c=7
d=-5
e=-2
(2,5đ)
b
P(12)=305074
P(14)=643396
P(16)=1230510
P(18)=2183344
(1đ)
c
Dư khi chia P(x) cho x-3 là: 424
Dư khi chia P(x) cho 2x+7 là: 197,71875
(1,5đ)
Bài 6. (5 điểm) . Cho hỡnh thang ABCD(AB//CD) với AB=15,5cm; DC=30,5cm; đường chộo BD hợp với tia BC một gúc bằng gúc DAB.
a) Tớnh độ dài đường chộo BD?
b) Tớnh tỉ số giữa diện tớch tam giỏc BDA và tam giỏc BDC?
 Túm tắt cỏch giải:
a) Xột tam giỏc ABD và tam giỏc BDC cú: 
(so le trong)
Hay: 
b) Do nờn: 
Hay: 
Điểm
(1,5đ)
(1đ)
(0,5đ)
(1đ)
(1đ)
Bài 7. (5 điểm) Cho dóy số (un) (với n∊ℕ) biết: 
a) Tớnh 5 số hạng đầu của dóy?
u0= 0
u1= 7
u2= 57
u3= 393
u4= 2645
(1đ)
b) Chứng minh rằng: un+2=7un+1- 2un+8 với "n∈ ℕ
 Biến đổi VT ta cú:
(1,5đ)
c) Cho u0= 0; u1=7. Tớnh cỏc giỏ trị từ u5 đến u12?
u5=17737
u6=118877
u7=796673
u8=5338965
(1đ)
u9=35779417
u10=239777997
u11=1606887153
u12=10768654085
Bài 8. (5 điểm). Cho tam giỏc ABC với AB = 6cm; AC = 8cm; BC = 10cm và G là trọng tõm của tam giỏc. Tớnh GA + GB + GC?
Túm tắt cỏch giải:
+ Tam giỏc ABC cú: 
nờn ∆ABC vuụng tại A
+ Tớnh AM=5 (cm)
+ Tớnh 
+ Tớnh 
+ Do 
(1đ)
(0,75đ)
(0,75đ)
(0,75đ)
(1đ)
Kết quả: GA+GB+GC≃ 
(0,75đ)
Bài 9. (5 điểm). Viờn gạch cạnh cú hoa văn như hỡnh vẽ
 a) Tớnh diện tớch phần gạch xọc của hỡnh đó cho, chớnh xỏc đến 0,01 cm.
b) Tớnh tỉ số phần trăm giữa diện tớch phần gạch xọc và diện tớch viờn gạch, chớnh xỏc đến 0,01%
Túm tắt cỏch giải 
Điểm
a) Gọi là bỏn kớnh hỡnh trũn.
Diện tớch một hỡnh viờn phõn bằng:
 (cm2)
Vậy diện tớch hỡnh gồm 8 viờn phõn bằng (cm2)
Diện tớch phần gạch xọc bằng:	
 = 386,28 (cm2)
(1đ)
(1,5đ)
(1,5đ)
b) Sau khi tớnh tỉ số ta được kết quả: 42,92%
(1đ)
Bài 10. (5 điểm).
a) Tỡm cỏc số tự nhiờn N nhỏ nhất và M lớn nhất gồm 12 chữ số, biết rằng M và N chia cho cỏc số 1256; 3568 và 4184 đều cho số dư là 973?.
Túm tắt cỏch giải:
Gọi x là số khi chia cho cỏc số 1256; 3568 và 4184 đều cho số dư là 973. 
Khi đú: x – 973∈BC(1256, 3568 , 4184). 
Do BCNN(1256, 3568 , 4184)=292972048
Nờn: x – 973=k. 292972048⇒ x =k. 292972048 + 973
Theo giả thiết ta cú: 1011≤x≤999999999999
Hay 1011≤ k. 292972048 + 973≤999999999999
Do đú: 341< k≤ 3413
Vậy: N= 342. 292972048 + 973=100196441389
 M= 3413. 292972048 + 973=999913600797
(0,5đ)
(0,5đ)
(0,5đ)
(0,5đ)
(0,5đ)
 (0,5đ)
b) Tỡm tất cả cỏc số sao cho P chia hết cho 12345 ?
Túm tắt cỏch giải:
- Cú 0 Ê Ê 99. 
- Gọi thương của cho 12345 là k ta cú:
 123400345 Ê 12345.k Ê 123499345
 9995,969 Ê k Ê 10003,99
- Xột 9996 Ê k Ê 10003 cú k = 10001 cho kết quả n=123462345 
- Thử lại ta thấy giỏ trị này thỏa món.
(0,5đ)
(0,5đ)
(0,5đ)
(0,5đ)
---Hết---

Tài liệu đính kèm:

  • docMTCT_1011_TINH_TQ.doc