Giáo án Máy tính casio

doc 32 trang Người đăng khoa-nguyen Lượt xem 1390Lượt tải 3 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Máy tính casio", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Giáo án Máy tính casio
Chương II: ĐA THỨC
Định lý Bezout
Số dư trong phép chia f(x) cho nhị thức x – a chính là f(a)
Hệ quả: Nếu a là nghiệm của f(x) thì f(x) chia hết cho x – a
Dạng 1. Tính giá trị của đa thức
Bài toán: Tính giá trị của đa thức P(x,y,) khi x = x0, y = y0; 
Phương pháp 1: (Tính trực tiếp) Thế trực tiếp các giá trị của x, y vào đa thức để tính.
Phương pháp 2: (Sơ đồ Horner, đối với đa thức một biến)
Viết dưới dạng 
Vậy . 
Đặt b0 = a0; b1 = b0x0 + a1; b2 = b1x0 + a2; ; bn = bn-1x0 + an. Suy ra: P(x0) = bn. 
Từ đây ta có công thức truy hồi: bk = bk-1x0 + ak với k ≥ 1.
Giải trên máy: - Gán giá x0 vào biến nhớm M.
	- Thực hiện dãy lặp: bk-1+ ak
Ví dụ 1.1: (Sở GD TP HCM, 1996) Tính khi x = 1,8165
Cách 1: Tính nhờ vào biến nhớ 
Aán phím: 1 8165
Kết quả: 1.498465582
Cách 2: Tính nhờ vào biến nhớ 
Aán phím: 18165
Kết quả: 1.498465582
Nhận xét: @ Phương pháp dùng sơ đồ Horner chỉ áp dụng hiệu quả đối với máy fx-220 và fx-500A, còn đối với máy fx-500 MS và fx-570 MS chỉ nên dùng phương pháp tính trực tiếp có sử dụng biểu thức chứa biến nhớ, riêng fx-570 MS có thể thế các giá trị của biến x nhanh bằng cách bấm , máy hỏi X? khi đó khai báo các giá trị của biến x ấn phím là xong. Để có thể kiểm tra lại kết quả sau khi tính nên gán giá trị x0 vào một biến nhớ nào đó khác biến Ans để tiện kiểm tra và đổi các giá trị.
Ví dụ 1.2: Tính khi x = 1,8165; x = - 0,235678; x = 865,321
Khi đó ta chỉ cần gán giá trị x1 = - 0,235678 vào biến nhớ X: 
 235678
Dùng phím mũi tên lên một lần (màn hình hiện lại biểu thức cũ) rồi ấn phím là xong.
@ Trong các kỳ thi dạng toán này luôn có, chiếm 1 đến 5 điểm trong bài thi. Khả năng tính toán dẫn đến sai số thường thì không nhiều nhưng nếu biểu thức quá phức tạp nên tìm cách chia nhỏ bài toán tránh vượt quá giới hạn bộ nhớ của máy tính sẽ dẫn đến sai kết quả (máy tính vẫn tính nhưng kết quả thu được là kết quả gần đúng, có trường hợp sai hẳn).
Dạng 2: Tìm dư trong phép chia đa thức P(x) 
cho nhị thức ax + b
Khi chia đa thức P(x) cho nhị thức ax + b ta luôn được P(x)=Q(x)(ax+b) + r, trong đó r là một số (không chứa biến x). Thế ta được P() = r.
Như vậy để tìm số dư khi chia P(x) cho nhị thức ax+b ta chỉ cần đi tính r = P(), lúc này dạng toán 2.2 trở thành dạng toán 2.1.
Ví dụ 2.1: (Sở GD TPHCM, 1998) 
Tìm số dư trong phép chia:P=
Số dư r = 1,62414 - 1,6249 - 1,6245 + 1,6244 + 1,6242 + 1,624 – 723
Qui trình ấn máy (fx-500MS và fx-570 MS)
Ấn các phím: 
Kết quả: r = 85,92136979
Dạng 3. Xác định tham số m để đa thức P(x) + m 
chia hết cho nhị thức ax + b
Khi chia đa thức P(x) + m cho nhị thức ax + b ta luôn được 
P(x)=Q(x)(ax+b) + m + r. Muốn P(x) chia hết cho ax +b thì m + r = 0 
hay m = -r = - P(). Như vậy bài toán trở về dạng toán 1.
Ví dụ 3.1: Xác định tham số
(Sở GD Hà Nội, 1996, Sở GD Thanh Hóa, 2000). 
Tìm a để chia hết cho x+6.-
- Giải - 
Số dư 
Qui trình ấn máy (fx-500MS và fx-570 MS)
Ấn các phím: 6
47213
Kết quả: a = -222
Ví dụ 3.2: (Sở GD Khánh Hòa, 2001) 
Cho P(x) = 3x3 + 17x – 625. Tính a để P(x) + a2 chia hết cho x + 3?
-- Giải –
Số dư a2 = - => a =
Qui trình ấn máy (fx-500MS và fx-570 MS)
Kết quả: a = 27,51363298
Chú ý: Để ý ta thấy rằng P(x) = 3x3 + 17x – 625 = (3x2 – 9x + 44)(x+3) – 757. 
Vậy để P(x) chia hết cho (x + 3) thì a2 = 757 => a = 27,51363298 và a = - 27,51363298
Vi du3.3
Tìm các giá trị của m để đa thức P(x) = 2x3 + 3x2 - 4x + 5 + m chia hết cho Q(x) = 3x +2
H.Dẫn:
- Phân tích P(x) = (2x3 + 3x2 - 4x + 5) + m = P1(x) + m. Khi đó: 
P(x) chia hết cho Q(x) = 3x + 2 khi và chỉ khi: P1(x) + m = (3x + 2).H(x)
Ta có: 
Tính trên máy giá trị của đa thức P1(x) tại ta được m = 
Vi du3.4: 
Cho hai đa thức P(x) = 3x2 - 4x + 5 + m; Q(x) = x3 + 3x2 - 5x + 7 + n
Tìm m, n để hai đa thức trên có nghiệm chung 
H.Dẫn:
 là nghiệm của P(x) thì m = , với P1(x) = 3x2 - 4x + 5
 là nghiệm của Q(x) thì n= với Q1(x) = x3 + 3x2 - 5x + 7.
Tính trên máy ta được: m = = ;n = =
Vi du3.5: 
Cho hai đa thức P(x) = x4 + 5x3 - 4x2 + 3x + m;Q(x) = x4 + 4x3 - 3x2 + 2x + n.
a) Tìm m, n để P(x), Q(x) chia hết cho (x - 2)
b) Xét đa thức R(x) = P(x) - Q(x). Với giá trị m, n vừa tìm chứng tỏ rằng đa thức R(x) chỉ có duy nhất một nghiệm.
H.Dẫn:
a) Giải tương tự VD 3.4, ta có: m = ;n = 
b) P(x) (x - 2) và Q(x) (x - 2) Þ R(x) (x - 2)
Ta lại có: R(x) = x3 - x2 + x - 6 = (x - 2)(x2 + x + 3), vì x2 + x + 3 > 0 với mọi x nên R(x) chỉ có một nghiệm x = 2.
Ví dụ 3.6
Cho đa thức f(x) = x4 + 9x3 + 2x2 + 11x . 
1. Tim giá trị của m để f(x) + m chia hết cho x+6
2. Với m vừa tìm được ở câu 1. T ính giá trị của đa thức P(x) = f(x) + m khi cho:
 x = + 
Giải:
1. f(x) + m chia hết cho x+6 nên f(x) + m viết được dưới d ạng 
f(x) + m = Q(x)(x+6) 
do đ ó f(-6) + m = 0 m = - f(-6)
HS lập quy trình tính đ úng k ết quả
 m = - f(-6) = - (- 642)= 642
2. Với m = 642
 ta được đa thức P(x) = x4 + 9x3 + 2x2 + 11x + 642 
Học sinh tính được x = 1.
Thay x = 1 vào và tính đ úng P(1) = 665 
Dạng 4: Tìm điều kiện tham số của thỏa mãn một điều kiện nào đó:
Ví dụ 4.1: (5 điểm) Cho đa thức P(x) = x3 + ax2 + bx + c
Tìm a, b, c biết rằng khi x lần lượt nhận các giá trị 1,2 ; 2,5 ; 3,7 thì P(x) có giá trị tương ứng là 1994,728 ; 2060,625 ; 2173,653
Tìm số dư r của phép chia đa thức P(x) cho 12x – 1
Tìm giá trị của x khi P(x) có giá trị là 1989
Giải:
Thay lần lượt các giá trị x = 1,2 ; x =2,5 ; x=3,7 vào đa thức P(x) = x3+ax2 + c 
 ta được hệ 
Giải hệ phương trình ta được a =10 ; b =3 ; c = 1975
b) Số dư của phép chia P(x) =x3+10x2+3x+1975 cho 2x+5 chính là giá trị P(-2,5) của đa thức P(x) tại x=-2,5. ĐS ; 2014,375
c) Giải phương trình P(x) =x3+10x2+3x+1975= 1989 hay x3+10x2+3x-14 =0 
 x=1 ; x= - 9,531128874 ; x= -1,468871126
Ví dụ 4.2:Cho P(x) = x3 + ax2 + bx - 1
Xác định số hữu tỉ a và b để x = là nghiệm của P(x);
Với giá trị a, b tìm được hãy tìm các nghiệm còn lại của P(x). 
Giải:
x = 6-Þ b = =6+-(6-)2 - a(6-)
(a+13) = b+6a+65 = 0 Þ a = -13 ; b =13 Þ P(x) =x3-13x2+13x-1
(x-1)(x2-12x+1) = 0 Þ x = 1 ; x » 0,08392 và x » 11,916
Ví dụ 4.3:Xác định các hệ số a, b, c của đa thức P(x) = ax3 + bx2 + cx – 2007 để sao cho P(x) chia hết cho (x – 13) có số dư là 2 và chia cho (x – 14) có số dư là 3.
Hướng dẫn: 
Ta có : P(x) = Q(x)(x – a) + r Þ P(a) = r
Vậy 	P(13) = a.133 + b.132 + c.13 – 2007 = 1
	P(3) = a.33 + b.32 + c.3 – 2007 = 2 
	P(14) = a.143 + b.142 + c.14 – 2007 = 3
Tính trên máy và rút gọn ta được hệ ba phương trình :
Tính trên máy được :a = 3,693672994 » 3,69
b = –110,6192807 » –110,62
c = 968,2814519 » 968,28
Dạng 5. Tìm đa thức thương khi chia đa thức 
cho đơn thức
Bài toán mở đầu: Chia đa thức a0x3 + a1x2 + a2x + a3 cho x – c ta sẽ được thương là một đa thức bậc hai Q(x) = b0x2 + b1x + b2 và số dư r. Vậy a0x3 + a1x2 + a2x + a3 = (b0x2 + b1x + b2)(x-c) + r = b0x3 + (b1-b0c)x2 + (b2-b1c)x + (r + b2c). Ta lại có công thức truy hồi Horner: b0 = a0; b1= b0c + a1; b2= b1c + a2; r = b2c + a3.
Tương tự như cách suy luận trên, ta cũng có sơ đồ Horner để tìm thương và số dư khi chia đa thức P(x) (từ bậc 4 trở lên) cho (x-c) trong trường hợp tổng quát.
: Tìm thương và dư trong phép chia đa thức P(x) cho (ax +b)
Cách giải:
- Để tìm dư: ta giải như bài toán 1
- Để tìm hệ số của đa thức thương: dùng lược đồ Hoocner để tìm thương trong phép chia đa thức P(x) cho (x +) 
Ví dụ 5.1 
Tìm thương và số dư trong phép chia x7 – 2x5 – 3x4 + x – 1 cho x – 5.
-- Giải --
Ta có: c = - 5; a0 = 1; a1 = 0; a2 = -2; a3 = -3; a4 = a5 = 0; a6 = 1; a7 = -1; b0 = a0 = 1.
Qui trình ấn máy (fx-500MS và fx-570 MS)
Vậy x7 – 2x5 – 3x4 + x – 1 =
= (x + 5)(x6 – 5x5 + 23x4 – 118x3 + 590x2 – 2590x + 14751) – 73756.
Ví dụ5.2: Tìm thương và dư trong phép chia P(x) = x7 - 2x5 - 3x4 + x - 1 cho (x + 5)
H.Dẫn: - Sử dụng lược đồ Hoocner, ta có:
1
0
-2
-3
0
0
1
-1
-5
1
-5
23
-118
590
-2950
14751
-73756
* Tính trên máy tính các giá trị trên như sau:
 5 
1 0 (-5) : ghi ra giấy -5
 2 (23) : ghi ra giấy 23
 3 (-118) : ghi ra giấy -118
 0 (590) : ghi ra giấy 590
 0 (-2950) : ghi ra giấy -2950
 1 (14751) : ghi ra giấy 14751
 1 (-73756) : ghi ra giấy -73756
x7 - 2x5 - 3x4 + x - 1 =
= (x + 5)(x6 - 5x5 + 23x4 - 118x3 + 590x2 - 2950x + 14751) – 73756
Vi du5.3: Tìm thương và dư trong phép chia P(x) = x3 + 2x2 - 3x + 1 cho (2x - 1)
Vi du 5.4: 
Chia x8 cho x + 0,5 được thương q1(x) dư r1. Chia q1(x) cho x + 0,5 được thương q2(x) dư r2. Tìm r2 ?
H.Dẫn:
- Ta phân tích: x8 = (x + 0,5).q1(x) + r1
 q1(x) = (x + 0,5).q2(x) + r2
- Dùng lược đồ Hoocner, ta tính được hệ số của các đa thức q1(x), q2(x) và các số dư r1, r2:
1
0
0
0
0
0
0
0
0
1
1
-1
VËy: 
Dạng 6. Phân tích đa thức theo bậc của đơn thức
Áp dụng n-1 lần dạng toán 2.4 ta có thể phân tích đa thức P(x) bậc n theo x-c: P(x)=r0+r1(x-c)+r2(x-c)2++rn(x-c)n.
Ví dụ6.1 Phân tích x4 – 3x3 + x – 2 theo bậc của x – 3.
-- Giải --
Trước tiên thực hiện phép chia P(x)=q1(x)(x-c)+r0 theo sơ đồ Horner để được q1(x) và r0. Sau đó lại tiếp tục tìm các qk(x) và rk-1 ta được bảng sau:
1
-3
0
1
-2
x4-3x2+x-2
3
1
0
0
1
1
q1(x)=x3+1, r0 = 1
3
1
3
9
28
q2(x)=x3+3x+1,r1=28
3
1
6
27
q3(x)=x+6, r0 = 27
3
1
9
q4(x)=1=a0, r0 = 9
Vậy x4 – 3x3 + x – 2 = 1 + 28(x-3) + 27(x-3)2 + 9(x-3)3 + (x-3)4.
Dạng 7. Tìm cận trên khoảng chứa nghiệm dương của đa thức
	Nếu trong phân tích P(x) = r0 + r1(x-c)+r2(x-c)2++rn(x-c)n ta có ri 0 với mọi i = 0, 1, , n thì mọi nghiệm thực của P(x) đều không lớn hơn c. 
Ví dụ 7.1: Cận trên của các nghiệm dương của đa thức x4 – 3x3 + x – 2 là c = 3. (Đa thức có hai nghiệm thực gần đúng là 2,962980452 và -0,9061277259)
Nhận xét: 	@ Các dạng toán 2.4 đến 2.6 là dạng toán mới (chưa thấy xuất hiện trong các kỳ thi) nhưng dựa vào những dạng toán này có thể giải các dạng toán khác như phân tích đa thức ra thừa số, giải gần đúng phương trình đa thức, .
	@ Vận dụng linh hoạt các phương pháp giải kết hợp với máy tính có thể giải được rất nhiều dạng toán đa thức bậc cao mà khả năng nhẩm nghiệm không được hoặc sử dụng công thức Cardano quá phức tạp. Do đó yêu cầu phải nắm vững phương pháp và vận dụng một cách khéo léo hợp lí trong các bài làm. 
Dạng.8. tính giá trị của đa thức khi biết
 một số giá trị khác của đa thức
Ví dụ 8.1 
Cho đa thức P(x) = x5 + ax4 + bx3 + cx2 + dx + e.
 Biết P(1) = 1; P(2) = 4; P(3) = 9; P(4) = 16; P(5) = 25. 
Tính P(6); P(7); P(8); P(9) = ? 
H.Dẫn:
Bước 1: Đặt Q(x) = P(x) + H(x) sao cho:
+ Bậc H(x) nhỏ hơn bậc của P(x)
+ Bậc của H(x) nhỏ hơn số giá trị đã biết của P(x), trongbài bậc H(x) nhỏ hơn 5, nghĩa là:
Q(x) = P(x) + a1x4 + b1x3 + c1x2 + d1x + e
Bước 2: Tìm a1, b1, c1, d1, e1 để Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0, tức là:
 Þ a1 = b1 = d1 = e1 = 0; c1 = -1
Vậy ta có: Q(x) = P(x) - x2 
Vì x = 1, x = 2, x = 3, x = 4, x = 5 là nghiệm của Q(x), mà bậc của Q(x) bằng 5 có hệ số của x5 bằng 1 nên:
 Q(x) = P(x) - x2 = (x -1)(x - 2)(x - 3)(x - 4)(x - 5) 
Þ P(x) = (x -1)(x - 2)(x - 3)(x - 4)(x - 5) + x2. 
Từ đó tính được: P(6) = ; P(7) = ; P(8) = ; P(9) = 
Ví dụ 8.2 Cho đa thức P(x) = x4 + ax3 + bx2 + cx + d.
 Biết P(1) = 5; P(2) = 7; P(3) = 9; P(4) = 11. 
Tính P(5); P(6); P(7); P(8); P(9) = ?
H.Dẫn:
- Giải tương tự bài 3, ta có: P(x) = (x -1)(x - 2)(x - 3)(x - 4) + (2x + 3). Từ đó tính được: P(5) = ; P(6) = ; P(7) = ; P(8) = ; P(9) = 
Ví dụ 8.3 Cho đa thức P(x) = x4 + ax3 + bx2 + cx + d. 
Biết P(1) = 1; P(2) = 3; P(3) = 6; P(4) = 10. 
Tính 
H.Dẫn:
- Giải tương tự bài 4, ta có: P(x) = (x -1)(x - 2)(x - 3)(x - 4) + . Từ đó tính được: 
Ví dụ 8.4 Cho đa thức f(x) bậc 4, hệ số của bậc cao nhất là 1 và thoả mãn:
 f(1) = 3; P(3) = 11; f(5) = 27. Tính giá trị A = f(-2) + 7f(6) = ?
H.Dẫn:
- Đặt g(x) = f(x) + ax2 + bx + c. Tìm a, b, c sao cho g(1) = g(3) = g(5) = 0 Þ a, b, c là nghiệm của hệ phương trình:
 Þ bằng MTBT ta giải được: 
Þ g(x) = f(x) - x2 - 2
Vì f(x) bậc 4 nên g(x) cũng có bậc là 4 và g(x) chia hết cho (x - 1), (x - 3), (x - 5), do vậy: g(x) = (x - 1)(x - 3)(x - 5)Þ f(x) = (x - 1)(x - 3)(x - 5)+ x2 + 2.
Ta tính được: A = f(-2) + 7f(6) = 
Ví dụ 8.4 Cho đa thức f(x) bậc 3. Biết f(0) = 10; f(1) = 12; f(2) = 4; f(3) = 1.
Tìm f(10) = ? (Đề thi HSG CHDC Đức)
 H.Dẫn:
- Giả sử f(x) có dạng: f(x) = ax3 + bx2 + cx + d. Vì f(0) = 10; f(1) = 12; f(2) = 4; f(3) = 1 nên: 
 lấy 3 phương trình cuối lần lượt trừ cho phương trình đầu và giải hệ gồm 3 phương trình ẩn a, b, c trên MTBT cho ta kết quả: Þ Þ 
Ví dụ8.5:
Chođa thức f(x) bậc 3 biết rằng khi chia f(x) cho (x - 1), (x - 2),(x - 3) đều được dư là 6 và f(-1) =-18 .Tính f(2005) = ?
H.Dẫn:
- Từ giả thiết, ta có: f(1) = f(2) = f(3) = 6 và có f(-1) = -18
- Giải tương tự như bài 8, ta có f(x) = x3 - 6x2 + 11x 
Từ đó tính được f(2005) = 
Ví dụ 8.6 Xác định các hệ số a, b, c, d và tính giá trị của đa thức.
Q(x) = x5 + ax4 – bx3 + cx2 + dx – 2007
Tại các giá trị của x = 1,15 ; 1,25 ; 1,35 ; 1,45.
Biết rằng khi x nhận các giá trị lần lượt 1, 2, 3, 4 thì Q(x) có các giá trị tương ứng là 9, 21, 33, 45
Giải:
Tính giá trị của P(x) tại x = 1, 2, 3, 4 ta được kết quả là : 
Lấy hai vế của phương trình (1) lần lượt nhân với 2, 3, 4 rồi trừ lần lượt vế đối vế với phương trình (2), phương trình (3), phương trình (4), ta được hệ phương trình bậc nhất 3 ẩn :
Tính trên máy được a = -93,5 ; b = -870 ; c = -2972,5 và d = 4211
Ta có P(x)=x5 – 93,5x4 + 870x3 -2972,5x2+ 4211x – 2007
Q(1,15) = 66,15927281 » 66,16
Q(1,25) = 86,21777344 » 86,22	
Q(1,35) = 94,91819906 » 94,92	
 Q(1,45) = 94,66489969 » 94,66
Ví dụ 8.7: 
Cho P(x) = x5 + ax4 + bx3 + cx2 + dx + f . 
Biết P(1) = 1 , P(2) = 4 , P(3) = 9 , P(4) = 16 , P(5) = 25 . 
Tính P(6) , P(7) , P(8) , P(9)
Giải: 
Ta có P(1) = 1 = 12; P(2) = 4 = 22 ; P(3) = 9 = 32 ; P(4) = 16 = 42 ; P(5) = 25 = 52
Xét đa thức Q(x) = P(x) – x2.
Dễ thấy Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0.
Suy ra 1; 2; 3; 4; 5 là nghiệm của đa thức Q(x).
Vì hệ số của x5 bằng 1 nên Q(x) có dạng:
Q(x) = (x – 1)(x – 2)(x – 3)(x – 4)(x – 5).
Vậy ta có Q(6) = (6 – 1)(6 – 2)(6 – 3)(6 – 4)(6 – 5) = P(6) - 62
Hay P(6) = 5! + 62 = 156.
Q(7) = (7 – 1)(7 – 2)(7 – 3)(7 – 4)(7 – 5) = P(7) – 72
Hay P(7) = 6! + 72 = 769
BÀI TẬP
Dạng 1. Tính giá trị của đa
Bài tập 1.1Cho P(x) = x5-14x4+85x3-224x2+274x-110
Lập quy trình bấm phím tính giá trị của biểu thức tại x=a
Tính P tại x=5,9; 20,11; 22,12; 14,2; 27,2; 26,3; 30,4.
Bài tập1.2(Sở GD Hà Nội, 1996) Tính giá trị biểu thức: 
a. Tính khi x = 1,35627
b. Tính khi x = 2,18567
Bài tập1.3 Cho đa thức P(x) = x15 -2x12 + 4x7 - 7x4 + 2x3 - 5x2 + x - 1
 Tính P(1,25); P(4,327); P(-5,1289); P()
H.Dẫn:
- Lập công thức P(x)
- Tính giá trị của đa thức tại các điểm: dùng chức năng 
- Kết quả: P(1,25) = ; P(4,327) = 
 P(-5,1289) = ; P() =
Bài tập:1.4Tính giá trị của các biểu thức sau:
P(x) = 1 + x + x2 + x3 +...+ x8 + x9 tại x = 0,53241
Q(x) = x2 + x3 +...+ x8 + x9 + x10 tại x = -2,1345
H.Dẫn:
- Áp dụng hằng đẳng thức: an - bn = (a - b)(an-1 + an-2b +...+ abn-2 + bn-1). Ta có:
P(x) = 1 + x + x2 + x3 +...+ x8 + x9 = 
Từ đó tính P(0,53241) = 
Tương tự: 
Q(x) = x2 + x3 +...+ x8 + x9 + x10 = x2(1 + x + x2 + x3 +...+ x8) = 
Từ đó tính Q(-2,1345) = 
Bài tập1.5:Cho đa thức 
a) Tính giá trị của đa thức khi x = -4; -3; -2; -1; 0; 1; 2; 3; 4.
b) Chứng minh rằng P(x) nhận giá trị nguyên với mọi x nguyên
Giải:
a) Khi x = -4; -3; -2; -1; 0; 1; 2; 3; 4 thì (tính trên máy) P(x) = 0
b) Do 630 = 2.5.7.9 và x = -4; -3; -2; -1; 0; 1; 2; 3; 4 là nghiệm của đa thức P(x) nên 
Vì giữa 9 só nguyên liên tiếp luôn tìm được các số chia hết cho 2, 5, 7, 9 nên với mọi x nguyên thì tích: chia hết cho 2.5.7.9 (tích của các số nguyên tố cùng nhau). Chứng tỏ P(x) là số nguyên với mọi x nguyên.
Bài tập1.6:Cho và 
Với giá trị nào của a, b, c thì P(x) = Q(x) đúng với mọi x thuộc tập xác định . 
Tính giá trị của P(x) khi x = .
 Tính n để chia hết cho x + 3
 Bài tập1.7:Cho đa thức P(x) = x4 +5x3 - 3x2 + x - 1. Tính giá trị của P(1,35627). 
Giải:
 P(1,35627) = 10,69558718
Bài tập1.8:Cho đa thức P(x) = x8 + 4x7 + 6x6 + 4x5 + x4
1. T ính giá trị của P(x) và (làm tròn đến 0,0001) khi cho x nhận các giá trị : 
-, , 1, -.
Bài tập1.9:Cho đa thức f(x) = x5 + x3 + x + 2008
1. Tính giá trị của f(x) khi cho x nhận các giá trị: 2 ; -1 ; 3; -; .
2. Chứng minh rằng: f(x) luôn nhận giá trị nguyên với mọi x nguyên.
Giải:
2. f(x) = x5 + x3 + x + 2008
Đặt A = x5 + x3 + x
Ta CM: A là một số nguyên với mọi x nguyên dương từ đó f(x) là một số nguyên.
Thật vậy: A = x5 + x3 + = x5 + x3 + x - 
 =x5 + x3 + x - x -x
 - + x
Ta CM x5 - x Chia hết cho 5; x3 - x chia hết cho 3.
thật vậy: x5 - x = x(x4 - 1)= x(x2 - 1)(x2 + 1)
=x(x2 - 1)(x2 - 4 + 5)
= x(x2 - 1)(x2 - 4) + 5x(x2 - 1)
=(x-2)(x-1)x(x+1)(x+2) + 5(x-1)x(x+1)
(x-2)(x-1)x(x+1)(x+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5. 
nên nguyên5(x-1)x(x+1) chi hết cho 5
x3 - x = x(x2-1) = (x-1)x(x+1) chia hết cho 3 nên nguyên
Vậy bài toán CM xong.
Dạng 2. Tìm dư trong phép chia đa thức P(x)
cho nhị thức ax + b
Bài tập: 2.1(Sở GD Đồng Nai, 1998) Tìm số dư trong phép chia 
Bài tập2.2: (Sở GD Cần Thơ, 2003) 
Cho . Tìm phần dư r1, r2 khi chia P(x) cho x – 2 và x-3. Tìm BCNN(r1,r2)?
Bài tập2.3:Tìm dư trong phép chia P(x) = 3x3 - 5x2 + 4x - 6 cho (2x - 5)
Giải:
Ta có: P(x) = (2x - 5).Q(x) + r Þ 
Tính trên máy ta được: r = = 
Bài tập2.4:Tính số dư r trong phép chia 
Bài tập2.5:: Tìm số dư trong các phép chia sau:
x3 – 9x2 – 35x + 7 cho x – 12.
x3 – 3,256 x + 7,321 cho x – 1,1617.
Bài tập2.6:Cho f(x) = 2x6-4x5+7x4-11x3-8x2+5x-2007. Gọi r1 và r2 lần lượt là số dư của phép chia f(x) cho x-1,12357 và x+0,94578. 
Tính B=0,(2006)r1-3,(2007)r2.
Dạng 3. Xác định tham số m để đa thức P(x) + m
chia hết cho nhị thức ax + b
Bài tập3.1: a)Viết phương trình ấn phím để:
Tìm m để đa thức chiahết cho 
b) Với giá trị nào của m thì đa thức chia hết cho 6x + 9
Bài tập3.2:Tìm m để đa thức 
 chia hết cho 
Bài tập3.3:Cho đa thức 
Tìm số dư r trong phép chia P(x) cho ( x – 3,5 ) khi m = 2005 
Tìm giá trị m1 để đa thức P(x) chia hết cho x – 3,5 
 Tìm giá trị m2 để đa thức P(x) có nghiệm x = 3 
Bài tập3.4:Cho đa thức P(x) = x4 + x3 + x2 + x + m.
a) Tìm m để P(x) chia hết cho Q(x) = x + 10.
Kết quả
m = -9090 (2,5đ) 
b) Tìm các nghiệm của đa thức P(x) với giá trị vừa tìm được của m. 
Kết quả
x1 = -10, x2 » 9,49672 (2,5đ)
Bài tập3.5:Cho ®a thøc P(x) = x4 - 4x3 - 19x2 + 106x + m.
a)T×m m ®Ó ®a thøc P(x) chia hÕt cho x + 5.
b) Víi m t×m ®­îc ë c©u a), h·y t×m sè d­ r khi chia ®a thøc P(x) cho x – 3.
Dạng 4: Tìm điều kiện tham số của
thỏa mãn một điều kiện nào đó:
Bài tập4.1:
Cho biết đa thức P(x) = x4 + mx3 – 55x2 + nx – 156 chia hết cho x – 2 và chia 
 hết cho x – 3. Hãy tìm giá trị của m, n rồi tính tất cả các nghiệm của đa thức
Bài tập4.2:Đa thức P(x) = ax4 + bx3 + cx2 + dx + e có giá trị bằng 5, 4, 3, 1, -2 lần lượt tại 
 x = 1, 2, 3, 4, 5. Tính giá trị của a, b, c, d, e và tính gần đúng các nghiệm của đa thức đó
Bài tập4.3:Xác định các hệ số a , b ,c của đa thức để sao cho P(x) chia cho (x – 13) có số dư là 1 , chia cho (x – 3) có số dư là 2 và chia cho (x - 14) có số dư là 3. ( Kết quả lấy với 2 chữ số ở phần thập phân )
Giải:
Lập luận đưa đến hệ 2 điểm; tìm được a,b,c đúng mỗi ý cho 1 điểm
Đáp số: : a = 3,69 ; b = -110,62 ; c = 968,28
Bài tập4.4Cho hai đa thức sau:
	f(x) = x4 + 5x3 - 4x2 + 3x + a
	g(x) = -3x4 + 4x3 - 3x2 + 2x + b
a)Tìm điều kiện của a và b để hai đa thức f(x) và g(x) có nghiệm chung
 x = 0,25 ?
b) Cho đa thức:Q(x) =5x5 - x4 - 6x3 + 27x2 - 54x + 32
Sử dụng các phím nhớ. Lập quy trình tìm số dư trong phép chia đa thức Q(x) cho 2x + 3?
c)Tính a để x4 + 7x3 + 2x2 + 13x + a chia hết cho x + 6
d)Cho P(x) = 3x3 + 17x – 625
+ Tính P(2)
+ Tính a để P(x) + a2 chia hết cho x + 3
Bài tập4.5:Xác định các hệ số a, b, c, d và tính giá trị của đa thức 
Q(x) = x5 + ax4 + bx3 + cx2 + dx – 2007 tại các giá trị của
 x = 1,15; 1,25; 1,35; 1,45
Bài tập4.6:Cho đa thức P(x) = x3 + ax2 + bx + c.
 Biết P(1) = -15; P(2) = -15; P(3) = -9.
a) Tìm số dư khi chia P(x) cho x – 4 ?
b) Tìm số dư khi chia P(x) cho 2x + 3 ?’
Bài tập4.7:Biết đa thức Q(x) = x4 + mx3

Tài liệu đính kèm:

  • docmay_tinh_casio_hay.doc