Giáo án bồi dưỡng học sinh giỏi Toán 9 năm học: 2012 - 2013

pdf 64 trang Người đăng minhphuc19 Lượt xem 698Lượt tải 3 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án bồi dưỡng học sinh giỏi Toán 9 năm học: 2012 - 2013", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Giáo án bồi dưỡng học sinh giỏi Toán 9 năm học: 2012 - 2013
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ1
Thanh Mỹ, ngày 20 tháng 7 năm 2012
CHUYÊN ĐỀ 1: SỐ CHÍNH PHƯƠNG
I. ĐỊNH NGHĨA: Số chính phương là số bằng bình phương đúng của một số nguyên.
II. TÍNH CHẤT:
1. Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9 ; không thể có chữ số tận cùng
bằng 2, 3, 7, 8.
2. Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn.
3. Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n + 1. Không có số chính phương nào có
dạng 4n + 2 hoặc 4n + 3 (n N).
4. Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n + 1. Không có số chính phương nào có
dạng 3n + 2 (n N).
5. Số chính phương tận cùng bằng 1 hoặc 9 thì chữ số hàng chục là chữ số chẵn.
Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2.
Số chính phương tận cùng bằng 4 thì chữ số hàng chục là chữ số chẵn.
Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.
6. Số chính phương chia hết cho 2 thì chia hết cho 4.
Số chính phương chia hết cho 3 thì chia hết cho 9.
Số chính phương chia hết cho 5 thì chia hết cho 25.
Số chính phương chia hết cho 8 thì chia hết cho 16.
III. MỘT SỐ DẠNG BÀI TẬP VỀ SỐ CHÍNH PHƯƠNG
A. DẠNG1: CHỨNGMINH MỘT SỐ LÀ SỐ CHÍNH PHƯƠNG
Bài 1: Chứng minh rằng với mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương.
Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y4
Đặt x2 + 5xy + 5y2 = t ( t  Z) thì
A = (t - y2)( t + y2) + y4 = t2 –y4 + y4 = t2 = (x2 + 5xy + 5y2)2
V ì x, y, z  Z nên x2  Z, 5xy  Z, 5y2  Z  x2 + 5xy + 5y2  Z
Vậy A là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n N). Ta có
n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ2
= (n2 + 3n)( n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t  N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = ( t + 1 )2
= (n2 + 3n + 1)2
Vì n  N nên n2 + 3n + 1  N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.
Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
Ta có k(k+1)(k+2) = 4
1 k(k+1)(k+2).4 = 4
1 k(k+1)(k+2).[(k+3) – (k-1)]
= 4
1 k(k+1)(k+2)(k+3) - 4
1 k(k+1)(k+2)(k-1)
S = 4
1 .1.2.3.4 - 4
1 .0.1.2.3 + 4
1 .2.3.4.5 - 4
1 .1.2.3.4 ++ 4
1 k(k+1)(k+2)(k+3) - 4
1
k(k+1)(k+2)(k-1) = 4
1 k(k+1)(k+2)(k+3)
4S + 1 = k(k+1)(k+2)(k+3) + 1
Theo kết quả bài 2  k(k+1)(k+2)(k+3) + 1 là số chính ph ương.
Bài 4: Cho dãy số 49; 4489; 444889; 44448889; 
Dãy số trên được xây dựng bằng cách thêm số 48 vào giữa số đứng trước nó. Chứng minh rằng
tất cả các số của dãy trên đều là số chính phương.
Ta có 4448889 = 44488..8 + 1 = 444 . 10n + 8 . 111 + 1
n chữ số 4 n-1 chữ số 8 n chữ số 4 n chữ số 8 n chữ số 4 n chữ số 1
= 4. 9
110 n . 10n + 8. 9
110 n + 1 = 9
9810.810.410.4 2  nnn = 9
110.410.4 2  nn
= 


 
3
110.2 n
Ta thấy 2.10n +1=20001 có tổng các chữ số chia hết cho 3 nên nó chia hết
cho 3
n-1 chữ số 0
 


 
3
110.2 n  Z hay các số có dạng 4448889 là số chính phương.
Bài 5: Chứng minh rằng các số sau đây là số chính phương:
A = 111 + 444 + 1
2n chữ số 1 n chữ số 4
B = 111 + 111 + 666 + 8
2n chữ số 1 n+1 chữ số 1 n chữ số 6
2
2
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ3
C = 444 + 222 + 888 + 7
2n chữ số 4 n+1 chữ số 2 n chữ số 8
Kết quả: A = 


 
3
210n ; B = 


 
3
810n ; C = 


 
3
710.2 n
Bài 6: Chứng minh rằng các số sau là số chính phương:
a. A = 22499910009
n-2 chữ số 9 n chữ số 0
b. B = 1115556
n chữ số 1 n-1 chữ số 5
a. A = 224.102n + 999.10n+2 + 10n+1 + 9= 224.102n + ( 10n-2 – 1 ) . 10n+2 + 10n+1 + 9
= 224.102n + 102n – 10n+2 + 10n+1 + 9= 225.102n – 90.10n + 9
= ( 15.10n – 3 ) 2  A là số chính phương
b. B = 11115555 + 1 = 111.10n + 5.111 + 1
n chữ số 1 n chữ số 5 n chữ số 1 n chữ số 1
= 9
110 n . 10n + 5. 9
110 n + 1 = 9
9510.510102  nnn
= 9
410.4102  nn = 


 
3
210n là số chính phương ( điều phải chứng minh)
Bài 7: Chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp không thể là một số chính
phương
Gọi 5 số tự nhiên liên tiếp đó là n-2, n-1, n , n+1 , n+2 (n N , n ≥2 ).
Ta có ( n-2)2 + (n-1)2 + n2 + ( n+1)2 + ( n+2)2 = 5.( n2+2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2+2 không thẻ chia hết cho 5
 5.( n2+2) không là số chính phương hay A không là số chính phương
Bài 8: Chứng minh rằng số có dạng n6 – n4 + 2n3 + 2n2 trong đó nN và n>1 không phải là số
chính phương
n6 – n4 + 2n3 +2n2 = n2.( n4 – n2 + 2n +2 ) = n2.[ n2(n-1)(n+1) + 2(n+1) ]
= n2[ (n+1)(n3 – n2 + 2) ] = n2(n+1).[ (n3+1) – (n2-1) ]= n2( n+1 )2.( n2–2n+2)
2 2 2
2
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ4
Với nN, n >1 thì n2-2n+2 = (n - 1)2 + 1 > ( n – 1 )2
và n2 – 2n + 2 = n2 – 2(n - 1) < n2
Vậy ( n – 1)2 < n2 – 2n + 2 < n2  n2 – 2n + 2 không phải là một số chính phương.
Bài 9: Cho 5 số chính phương bất kì có chữ số hàng chục khác nhau còn chữ số hàng đơn vị đều là 6.
Chứng minh rằng tổng các chữ số hàng chục của 5 số chính phương đó là một số chính phương
Cách 1: Ta biết một số chính phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nó là số
lẻ. Vì vậy chữ số hàng chục của 5 số chính phương đã cho là 1,3,5,7,9 khi đó tổng của chúng bằng 1 +
3 + 5 + 7 + 9 = 25 = 52 là số chính phương
Cách 2: Nếu một số chính phương M = a2 có chữ số hàng đơn vị là 6 thì chữ số tận cùng của a là
4 hoặc 6  a2  a2  4
Theo dấu hiệu chia hết cho 4 thì hai chữ số tận cùng của M chỉ có thể là 16, 36, 56, 76, 96  Ta
có: 1 + 3 + 5 + 7 + 9 = 25 = 52 là số chính phương.
Bài 10: Chứng minh rằng tổng bình phương của hai số lẻ bất kỳ không phải là một số chính phương.
a và b lẻ nên a = 2k+1, b = 2m+1 (Với k, m N)
 a2 + b2 = (2k+1)2 + (2m+1)2 = 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2 = 4t + 2 (Với t N)
Không có số chính phương nào có dạng 4t + 2 (t  N) do đó a2 + b2 không thể là số chính phương.
Bài 11: Chứng minh rằng nếu p là tích của n số nguyên tố đầu tiên thì p - 1 và p + 1 không thể là các
số chính phương.
Vì p là tích của n số nguyên tố đầu tiên nên p2 và p không chia hết cho 4 (1)
a. Giả sử p+1 là số chính phương . Đặt p+1 = m2 (m N)
Vì p chẵn nên p+1 lẻ  m2 lẻ  m lẻ.
Đặt m = 2k+1 (k N). Ta có m2 = 4k2 + 4k + 1  p+1 = 4k2 + 4k + 1
 p = 4k2 + 4k = 4k(k+1)  4 mâu thuẫn với (1)
 p+1 là số chính phương
b. p = 2.3.5 là số chia hết cho 3  p-1 có dạng 3k+2.
Không có số chính phương nào có dạng 3k+2  p-1 không là số chính phương .
Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương
Bài 12: Giả sử N = 1.3.5.72007.
Chứng minh rằng trong 3 số nguyên liên tiếp 2N-1, 2N và 2N+1 không có số nào là số chính phương.
a. 2N-1 = 2.1.3.5.72007 – 1
Có 2N  3  2N-1 không chia hết cho 3 và 2N-1 = 3k+2 (k N)
 2N-1 không là số chính phương.
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ5
b. 2N = 2.1.3.5.72007
Vì N lẻ  N không chia hết cho 2 và 2N  2 nhưng 2N không chia hết cho 4.
2N chẵn nên 2N không chia cho 4 dư 1  2N không là số chính phương.
c. 2N+1 = 2.1.3.5.72007 + 1
2N+1 lẻ nên 2N+1 không chia hết cho 4
2N không chia hết cho 4 nên 2N+1 không chia cho 4 dư 1
 2N+1 không là số chính phương.
Bài 13: Cho a = 111 ; b = 10005
2008 chữ số 1 2007 chữ số 0
Chứng minh 1ab là số tự nhiên.
Cách 1: Ta có a = 111 = 9
1102008  ; b = 10005 = 1000 + 5 = 102008 + 5
2008 chữ số 1 2007 chữ số 0 2008 chữ số 0
 ab+1 = 9
)510)(110( 20082008  + 1 = 9
9510.4)10( 200822008  = 


 
3
2102008
1ab = 


 
3
2102008 = 3
2102008 
Ta thấy 102008 + 2 = 10002  3 nên 3
2102008  N hay 1ab là số tự nhiên.
2007 chữ số 0
Cách 2: b = 10005 = 1000 – 1 + 6 = 999 + 6 = 9a +6
2007 chữ số 0 2008 chữ số 0 2008 chữ số 9
 ab+1 = a(9a +6) + 1 = 9a2 + 6a + 1 = (3a+1)2
 1ab = 2)13( a = 3a + 1 N
B. DẠNG 2: TÌM GIÁ TRỊ CỦA BIẾN ĐỂ BIỂU THỨC LÀ SỐ CHÍNH PHƯƠNG
Bài1: Tìm số tự nhiên n sao cho các số sau là số chính phương:
a. n2 + 2n + 12 b. n ( n+3 )
c. 13n + 3 d. n2 + n + 1589
Giải
a. Vì n2 + 2n + 12 là số chính phương nên đặt n2 + 2n + 12 = k2 (k N)
 (n2 + 2n + 1) + 11 = k2  k2 – (n+1)2 = 11  (k+n+1)(k-n-1) = 11
2
2
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ6
Nhận xét thấy k+n+1 > k-n-1 và chúng là những số nguyên dương, nên ta có thể viết (k+n+1)(k-n-
1) = 11.1  k+n+1 = 11  k = 6
k – n - 1 = 1 n = 4
b. Đặt n(n+3) = a2 (n N)  n2 + 3n = a2  4n2 + 12n = 4a2
 (4n2 + 12n + 9) – 9 = 4a2  (2n + 3) 2 - 4a2 = 9 (2n + 3 + 2a)(2n + 3 – 2a)= 9
Nhận xét thấy 2n + 3 + 2a > 2n + 3 – 2a và chúng là những số nguyên dương, nên ta có thể viết
(2n + 3 + 2a)(2n + 3 – 2a) = 9.1
 2n + 3 + 2a = 9  n = 1
2n + 3 – 2a = 1 a = 2
c. Đặt 13n + 3 = y2 ( y N)  13(n – 1) = y2 – 16 13(n – 1) = (y + 4)(y – 4)
 (y + 4)(y – 4)  13 mà 13 là số nguyên tố nên y + 4  13 hoặc y – 4  13
 y = 13k  4 (Với k N)
 13(n – 1) = (13k  4 )2 – 16 = 13k.(13k  8)
 n = 13k2  8k + 1
Vậy n = 13k2  8k + 1 (Với k N) thì 13n + 3 là số chính phương.
d. Đặt n2 + n + 1589 = m2 (m N)  (4n2 + 1)2 + 6355 = 4m2
 (2m + 2n +1)(2m – 2n -1) = 6355
Nhận xét thấy 2m + 2n +1> 2m – 2n -1 > 0 và chúng là những số lẻ, nên ta có thể viết (2m + 2n
+1)(2m – 2n -1) = 6355.1 = 1271.5 = 205.31 = 155.41
Suy ra n có thể có các giá trị sau: 1588; 316; 43; 28.
Bài 2: Tìm a để các số sau là những số chính phương:
a. a2+ a + 43
b. a2 + 81
c. a2 + 31a + 1984
Kết quả: a. 2; 42; 13
b. 0; 12; 40
c. 12; 33; 48; 97; 176; 332; 565; 1728
Bài 3: Tìm số tự nhiên n ≥ 1 sao cho tổng 1! + 2! + 3! +  + n! là một số chính phương .
Với n = 1 thì 1! = 1 = 12 là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 32 là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; ; n! đều tận cùng bởi 0
do đó 1! + 2! + 3! +  + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ7
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Bài 4: Tìm nN để các số sau là số chính phương:
a. n2 + 2004 ( Kết quả: 500; 164)
b. (23 – n)(n – 3) ( Kết quả: 3; 5; 7; 13; 19; 21; 23)
c. n2 + 4n + 97
d. 2n + 15
Bài 5: Có hay không số tự nhiên n để 2006 + n2 là số chính phương.
Giả sử 2006 + n2 là số chính phương thì 2006 + n2 = m2 (m N)
Từ đó suy ra m2 – n2 = 2006  (m + n)(m - n) = 2006
Như vậy trong 2 số m và n phải có ít nhất 1 số chẵn (1)
Mặt khác m + n + m – n = 2m  2 số m + n và m – n cùng tính chẵn lẻ (2)
Từ (1) và (2)  m + n và m – n là 2 số chẵn
 (m + n)(m - n)  4 Nhưng 2006 không chia hết cho 4
 Điều giả sử sai.
Vậy không tồn tại số tự nhiên n để 2006 + n2 là số chính phương.
Bài 6: Biết xN và x>2. Tìm x sao cho x(x-1).x(x-1) = (x-2)xx(x-1)
Đẳng thức đã cho được viết lại như sau: x(x-1) = (x-2)xx(x-1)
Do vế trái là một số chính phương nên vế phải cũng là một số chính phương .
Một số chính phương chỉ có thể tận cùng bởi 1 trong các chữ số 0; 1; 4; 5; 6; 9 nên x chỉ có thể tận
cùng bởi 1 trong các chữ số 1; 2; 5; 6; 7; 0 (1)
Do x là chữ số nên x ≤ 9, kết hợp với điều kiện đề bài ta có xN và 2 < x ≤ 9 (2)
Từ (1) và (2)  x chỉ có thể nhận 1 trong các giá trị 5; 6; 7.
Bằng phép thử ta thấy chỉ có x = 7 thỏa mãn đề bài, khi đó 762 = 5776
Bài 7: Tìm số tự nhiên n có 2 chữ số biết rằng 2n+1 và 3n+1 đều là các số chính phương.
Ta có 10 ≤ n ≤ 99 nên 21 ≤ 2n+1 ≤ 199. Tìm số chính phương lẻ trong khoảng trên ta được 25; 49;
81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84.
Số 3n+1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương.
Vậy n = 40
Bài 8: Chứng minh rằng nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì
n là bội số của 24.
Vì n+1 và 2n+1 là các số chính phương nên đặt n+1 = k2 , 2n+1 = m2 (k, m N)
Ta có m là số lẻ  m = 2a+1  m2 = 4a (a+1) + 1
 n = 2
12 m = 2
)1(4 aa = 2a(a+1)
2
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ8
 n chẵn  n+1 lẻ  k lẻ  Đặt k = 2b+1 (Với b N)  k2 = 4b(b+1) +1
 n = 4b(b+1)  n  8 (1)
Ta có k2 + m2 = 3n + 2  2 (mod3)
Mặt khác k2 chia cho 3 dư 0 hoặc 1, m2 chia cho 3 dư 0 hoặc 1.
Nên để k2 + m2  2 (mod3) thì k2  1 (mod3)
m2  1 (mod3)
 m2 – k2  3 hay (2n+1) – (n+1)  3  n  3 (2)
Mà (8; 3) = 1 (3)
Từ (1), (2), (3)  n  24.
Bài 9: Tìm tất cả các số tự nhiên n sao cho số 28 + 211 + 2n là số chính phương .
Giả sử 28 + 211 + 2n = a2 (a N) thì
2n = a2 – 482 = (a+48)(a-48)
2p.2q = (a+48)(a-48) Với p, q N ; p+q = n và p > q
 a+48 = 2p  2p – 2q = 96  2q (2p-q -1) = 25.3
a- 48 = 2q
 q = 5 và p-q = 2  p = 7 n = 5+7 = 12
Thử lại ta có: 28 + 211 + 2n = 802
C. DẠNG 3: TÌM SỐ CHÍNH PHƯƠNG
Bài 1: Cho A là số chính phương gồm 4 chữ số. Nếu ta thêm vào mỗi chữ số của A một đơn vị thì
ta được số chính phương B. Hãy tìm các số A và B.
Gọi A = abcd = k2. Nếu thêm vào mỗi chữ số của A một đơn vị thì ta có số
B = (a+1)(b+1)(c+1)(d+1) = m2 với k, m N và 32 < k < m < 100
a, b, c, d N ; 1 ≤ a ≤ 9 ; 0 ≤ b, c, d ≤ 9
 Ta có A = abcd = k2
B = abcd + 1111 = m2
 m2 – k2 = 1111  (m-k)(m+k) = 1111 (*)
Nhận xét thấy tích (m-k)(m+k) > 0 nên m-k và m+k là 2 số nguyên dương.
Và m-k < m+k < 200 nên (*) có thể viết (m-k)(m+k) = 11.101
Do đó m – k == 11  m = 56  A = 2025
m + k = 101 n = 45 B = 3136
Bài 2: Tìm 1 số chính phương gồm 4 chữ số biết rằng số gồm 2 chữ số đầu lớn hơn số gồm 2 chữ số
sau 1 đơn vị.
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ9
Đặt abcd = k2 ta có ab – cd = 1 và k N, 32 ≤ k < 100
Suy ra 101cd = k2 – 100 = (k-10)(k+10)  k +10  101 hoặc k-10  101
Mà (k-10; 101) = 1  k +10  101
Vì 32 ≤ k < 100 nên 42 ≤ k+10 < 110  k+10 = 101  k = 91
 abcd = 912 = 8281
Bài 3: Tìm số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau, 2 chữ số cuối giống
nhau.
Gọi số chính phương phải tìm là aabb = n2 với a, b  N, 1 ≤ a ≤ 9; 0 ≤ b ≤ 9
Ta có n2 = aabb = 11.a0b = 11.(100a+b) = 11.(99a+a+b) (1)
Nhận xét thấy aabb  11  a + b  11
Mà 1 ≤ a ≤ 9 ; 0 ≤ b ≤ 9 nên 1 ≤ a+b ≤ 18  a+b = 11
Thay a+b = 11 vào (1) được n2 = 112(9a+1) do đó 9a+1 là số chính phương .
Bằng phép thử với a = 1; 2; ; 9 ta thấy chỉ có a = 7 thỏa mãn  b = 4
Số cần tìm là 7744
Bài 4: Tìm một số có 4 chữ số vừa là số chính phương vừa là một lập phương.
Gọi số chính phương đó là abcd . Vì abcd vừa là số chính phương vừa là một lập phương nên đặt
abcd = x2 = y3 Với x, y N
Vì y3 = x2 nên y cũng là một số chính phương .
Ta có 1000 ≤ abcd ≤ 9999  10 ≤ y ≤ 21 và y chính phương  y = 16
 abcd = 4096
Bài 5: Tìm một số chính phương gồm 4 chữ số sao cho chữ số cuối là số nguyên tố, căn bậc hai
của số đó có tổng các chữ số là một số chính phương.
Gọi số phải tìm là abcd với a, b, c, d nguyên và 1 ≤ a ≤ 9 ; 0 ≤ b,c,d ≤ 9
abcd chính phương d { 0,1,4,5,6,9}
d nguyên tố  d = 5
Đặt abcd = k2 < 10000  32 ≤ k < 100
k là một số có hai chữ số mà k2 có tận cùng bằng 5  k tận cùng bằng 5
Tổng các chữ số của k là một số chính phương  k = 45
 abcd = 2025
Vậy số phải tìm là 2025
Bài 6: Tìm số tự nhiên có hai chữ số biết rằng hiệu các bình phương của số đó và viết số bởi hai
chữ số của số đó nhưng theo thứ tự ngược lại là một số chính phương
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ10
Gọi số tự nhiên có hai chữ số phải tìm là ab ( a,b  N, 1 ≤ a,b ≤ 9 )
Số viết theo thứ tự ngược lại ba
Ta có ab - ba = ( 10a + b ) 2 – ( 10b + a )2 = 99 ( a2 – b2 )  11  a2 - b2  11
Hay ( a-b )(a+b )  11
Vì 0 < a - b ≤ 8 , 2 ≤ a+b ≤ 18 nên a+b  11  a + b = 11
Khi đó ab - ba = 32 . 112 . (a - b)
Để ab - ba là số chính phương thì a - b phải là số chính phương do đó a-b = 1 hoặc a - b = 4
 Nếu a-b = 1 kết hợp với a+b = 11  a = 6, b = 5, ab = 65
Khi đó 652 – 562 = 1089 = 332
 Nếu a - b = 4 kết hợp với a+b = 11  a = 7,5 ( loại )
Vậy số phải tìm là 65
Bài 7: Cho một số chính phương có 4 chữ số. Nếu thêm 3 vào mỗi chữ số đó ta cũng được một số
chính phương. Tìm số chính phương ban đầu
( Kết quả: 1156 )
Bài 8: Tìm số có 2 chữ số mà bình phương của số ấy bằng lập phương của tổng các chữ số của nó.
Gọi số phải tìm là ab với a,b  N và 1 ≤ a ≤ 9 , 0 ≤ b ≤ 9
Theo giả thiết ta có : ab = ( a + b )3  (10a+b)2 = ( a + b )3
 ab là một lập phương và a+b là một số chính phương
Đặt ab = t3 ( t  N ) , a + b = l 2 ( l  N )
Vì 10 ≤ ab ≤ 99  ab = 27 hoặc ab = 64
 Nếu ab = 27  a + b = 9 là số chính phương
 Nếu ab = 64  a + b = 10 không là số chính phương  loại
Vậy số cần tìm là ab = 27
Bài 9: Tìm 3 số lẻ liên tiếp mà tổng bình phương là một số có 4 chữ số giống nhau.
Gọi 3 số lẻ liên tiếp đó là 2n-1, 2n+1, 2n+3 ( n  N)
Ta có A= ( 2n-1 )2 + ( 2n+1)2 + ( 2n+3 )2 = 12n2 + 12n + 11
Theo đề bài ta đặt 12n2 + 12n + 11 = aaaa = 1111.a với a lẻ và 1 ≤ a ≤ 9
 12n( n + 1 ) = 11(101a – 1 )
 101a – 1  3  2a – 1  3
Vì 1 ≤ a ≤ 9 nên 1 ≤ 2a-1 ≤ 17 và 2a-1 lẻ nên 2a – 1  { 3; 9; 15 }
 a  { 2; 5; 8 }
Vì a lẻ  a = 5  n = 21
2 2
2 2
2 2
2
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ11
3 số càn tìm là 41; 43; 45
Bài 10: Tìm số có 2 chữ số sao cho tích của số đó với tổng các chữ số của nó bằng tổng lập phương
các chữ số của số đó.
ab (a + b ) = a3 + b3
 10a + b = a2 – ab + b2 = ( a + b )2 – 3ab
 3a( 3 + b ) = ( a + b ) ( a + b – 1 )
a + b và a + b – 1 nguyên tố cùng nhau do đó
a + b = 3a hoặc a + b – 1 = 3a
a + b – 1 = 3 + b a + b = 3 + b
 a = 4 , b = 8 hoặc a = 3 , b = 7
Vậy ab = 48 hoặc ab = 37.
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ12
Thanh Mỹ, ngày 23 tháng 7 năm 2012
Chuyên đề 2: CỰC TRỊ CỦA MỘT BIỂU THỨC
I/ GIÁ TRỊ LỚN NHẤT ,GIÁ TRỊ NHỎ NHẤT CỦẢ MỘT BIỂU THỨC
1/ Cho biểu thức f( x ,y,...)
a/ Ta nói M giá trị lớn nhất ( GTLN) của biểu thức f(x,y...) kí hiệu max f = M nếu hai điều kiện sau đây
được thoả mãn:
- Với mọi x,y... để f(x,y...) xác định thì :
f(x,y...)  M ( M hằng số) (1)
- Tồn tại xo,yo ... sao cho:
f( xo,yo...) = M (2)
b/ Ta nói m là giá trị nhỏ nhất (GTNN) của biểu thức f(x,y...) kí hiệu min f = m nếu hai điều kiện sau đây
được thoả mãn :
- Với mọi x,y... để f(x,y...) xác định thì :
f(x,y...)  m ( m hằng số) (1’)
- Tồn tại xo,yo ... sao cho:
f( xo,yo...) = m (2’)
2/ Chú ý : Nếu chỉ có điều kiện (1) hay (1’) thì chưa có thể nói gì về cực trị của một biểu thức chẳng
hạn, xét biểu thức : A = ( x- 1)2 + ( x – 3)2. Mặc dù ta có A  0 nhưng chưa thể kết luận được minA
= 0 vì không tồn tại giá trị nào của x để A = 0 ta phải giải như sau:
A = x2 – 2x + 1 + x2 – 6x + 9 = 2( x2 – 4x + 5) = 2(x – 2)2 + 2  2
A = 2  x -2 = 0  x = 2
Vậy minA = 2 khi chỉ khi x = 2
II/ TÌM GTNN ,GTLN CỦA BIỂU THƯC CHỨA MỘT BIẾN
1/ Tam thức bậc hai:
Ví dụ: Cho tam thức bậc hai P = ax2 + bx + c .
Giáo án BDHSG Toán 9 Năm học: 2012-2013
Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ13
Tìm GTNN của P nếu a  0.
Tìm GTLN của P nếu a  0
Giải : P = ax2 + bx +c = a( x2 + a
b x ) + c = a( x + a
b
2 )
2 + c -
2
24
b
a
Đặt c - a
b
4
2
=k . Do ( x + a
b
2 )
2  0 nên :
- Nếu a  0 thì a( x + a
b
2 )
2  0 , do đó P  k. MinP = k khi và chỉ khi x = - a
b
2
-Nếu a  0 thì a( x + a
b
2 )
2 ` 0 do đó P ` k. MaxP = k khi và chỉ khi x = - a
b
2
2/ Đa thức bậc cao hơn hai:
Ta có thể đổi biến để đưa về tam thức bậc hai
Ví dụ : Tìm GTNN của A = x( x-3)(x – 4)( x – 7)
Giải : A = ( x2 - 7x)( x2 – 7x + 12)
Đặt x2 – 7x + 6 = y thì A = ( y - 6)( 

Tài liệu đính kèm:

  • pdfCo_che_tuyen_gv_day_chuyen_nen_thoang_ve_bang_cap_ty.pdf