SỞ GIÁO DỤC – ĐÀO TẠO NAM ĐỊNH ĐỀ THI TUYỂN SINH LỚP 10 TRƯỜNG THPT CHUYÊN NĂM HỌC 2011 – 2012 Môn: TOÁN (chung) ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Câu 1.(1,5 điểm): Cho biểu thức : với Rút gọn biểu thức P. Tìm x để 2P – x = 3. Câu 2.(2 điểm): Trên mặt phẳng với hệ tọa độ Oxy cho điểm M có hoành độ bằng 2 và M thuộc đồ thị hàm số . Lập phương trình đường thẳng đi qua gốc tọa độ O và điểm M ( biết đường thẳng OM là đồ thị hàm số bậc nhất). Cho phương trình . Biết phương trình (1) có hai nghiệm . Lập phương trình bậc hai ẩn y ( Với các hệ số là số nguyên ) có hai nghiệm lần lượt là Câu 3.(1,0 điểm): Giải hệ phương trình: Câu 4.(3,0 điểm): Cho đường tròn (O; R). Lấy điểm M nằm ngoài (O;R) sao cho qua M kẻ được hai tiếp tuyến MA, MB của (O;R) và góc AMB nhọn ( với A, B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt đường tròn (O;R) tại N (khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K (khác A). Chứng minh tứ giác NHBI là tứ giác nội tiếp. Chứng minh tam giác NHI đồng dạng với tam giác NIK. Gọi C là giao điểm của NB và HI; gọi D là giao điểm của NA và KI. Đường thẳng CD cắt MA tại E. Chứng minh CI = EA. Câu 5.(1,5 điểm) Giải phương trình : Chứng minh rằng : Với mọi . Giải phương trình: . ----------------------------------------HẾT----------------------------------------- HUỚNG DẪN MỘT SỐ CÂU CHUYÊN NAM ĐỊNH (2011-2012) Câu 3.(1,0 điểm): Giải hệ phương trình: ĐKXĐ: Câu 4.(3,0 điểm): Cho đường tròn (O; R). Lấy điểm M nằm ngoài (O;R) sao cho qua M kẻ được hai tiếp tuyến MA, MB của (O;R) và góc AMB nhọn ( với A, B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt đường tròn (O;R) tại N (khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K (khác A). Chứng minh tứ giác NHBI là tứ giác nội tiếp. Chứng minh tam giác NHI đồng dạng với tam giác NIK. Gọi C là giao điểm của NB và HI; gọi D là giao điểm của NA và KI. Đường thẳng CD cắt MA tại E. Chứng minh CI = EA. 1) các em tự làm 2) cm tương tự câu 1) ta có AINK nội tiếp 3) ta có: Do đó CNDI nội tiếp DC//AI. Lại có Vậy AECI là hình bình hành =>CI = EA. Câu 5.(1,5 điểm) Giải phương trình : Đặt x – 1 = t; = m ta có: Giải pt này ta được Với Với ...... các em giải tiếp! Chứng minh rằng : Với mọi (1) Đặt , ta có (2) (3) Vì => (3) đúng . Vậy ta có đpcm 3, Điều kiện: Đặt , suy ra: , thay vào PT đã cho có: (thỏa mãn điều kiện) vô nghiệm do Vậy PT đã cho có nghiệm duy nhất .
Tài liệu đính kèm: