PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI HỌC KỲ I NĂM HỌC 2014 – 2015 QUẬN BÌNH THẠNH MÔN TOÁN LỚP 9 Thời gian 90 phút (không kể thời gian phát đề) Bài 1 (3 điểm). Tính: Bài 2 (1 điểm). Rút gọn biểu thức sau: với x > 0 và x ≠ 4 Bài 3 (1 điểm). Giải phương trình: Bài 4 (1.5 điểm). Cho hàm số y = có đồ thị (D) và hàm số y = x – 6 có đồ thị (D/). Vẽ (D) và (D/) trên cùng một hệ trục tọa độ. Tìm toạ độ giao điểm A của (D) và (D/) bằng phép tính. Bài 5 (3.5 điểm). Cho đường tròn (O) và điểm A bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C). Chứng minh BD vuông góc AC và AB2 = AD . AC. Từ C vẽ dây CE // OA. BE cắt OA tại H. Chứng minh H là trung điểm BE và AE là tiếp tuyến của đường tròn (O). Chứng minh . Tia OA cắt đường tròn (O) tại F. Chứng minh FA . CH = HF . CA. ĐÁP ÁN MÔN TOÁN LỚP 9 Bài 1 (3 điểm). Tính: 1 = 0.25 = 0.5 = 0.25 1 = 0.25 = = 0.5 = 2 0.25 1 = 0.5 = 0.25 = 3 0.25 Bài 2 (1 điểm). Rút gọn biểu thức sau: với x > 0 và x ≠ 4 1 = 0.25 = = 0.25 = 0.25 = = 3 0.25 Bài 3 (1 điểm). Giải phương trình: (*) 1 ĐK: (*) Û 0.25 Û 0.25 Û x – 3 = 4 (2 ≥ 0) 0.25 Û x = 7 So ĐK nhận Vậy S = {7} 0.25 Bài 4 (1.5 điểm). Cho hàm số y = có đồ thị (D) và hàm số y = x – 6 có đồ thị (D/). Vẽ (D) và (D/) trên cùng một hệ trục tọa độ. 1 (D): Lập bảng giá trị 0.25 Vẽ 0.25 Tương tự cho (D/) 0.5 Tìm toạ độ giao điểm A của (D) và (D/) bằng phép tính. 0.5 Phương trình hòanh độ giao điểm 0.25 Tìm toạ độ giao điểm A của (D) và (D/) 0.25 Bài 5 (3.5 điểm). Cho đường tròn (O) và điểm A bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C). Chứng minh BD vuông góc AC và AB2 = AD . AC. 1 CM: BD vuông góc AC 0.5 CM: ∆ABC vuông tại A 0.25 CM: AB2 = AD . AC 0.25 Từ C vẽ dây CE // OA. BE cắt OA tại H. Chứng minh H là trung điểm BE và AE là tiếp tuyến của đường tròn (O). 1 CM: H trung điểm BE 0.5 CM: AE là tiếp tuyến của đường tròn (O) 0.5 Chứng minh . 0.75 CM: OC2 = OH . OA (= AB2) 0.25 CM: ∆OCH ~ ∆OAC 0.25 Þ 0.25 Tia OA cắt đường tròn (O) tại F. Chứng minh FA . CH = HF . CA. 0.75 CM: 0.25 CM: 0.25 CM: CF là đường phân giác của . CM: FA . CH = HF . CA 0.25
Tài liệu đính kèm: