ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ I Môn: Toán – Lớp 9 (đề 6) Thời gian làm bài: 90 phút Bài 1.( 1,5điểm) 1. Tính giá trị các biểu thức sau: 2. Chứng minh rằng Bài 2.(2điểm) Cho biểu thức : P = ( Với a 0 ; a 4 ) 1) Rút gọn biểu thức P. 2) Tính tại a thoả mãn điều kiện a2 – 7a + 12 = 0 3) Tìm giá trị của a sao cho P = a + 1. Bài 3. (2điểm) Cho hai đường thẳng : (d1): y = và (d2): y = 1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy. 2. Gọi A và B lần lượt là giao điểm của (d1) và (d2) với trục Ox , C là giao điểm của (d1) và (d2) . Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm) Bài 4. (4,5điểm) Cho tam giác ABC nhọn . Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM. 1) Chứng minh AH BC . 2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O) 3) Chứng minh MN. OE = 2ME. MO 4) Giả sử AH = BC. Tính tang BAC. ------------------------------------------- BÀI GIẢI CHI TIẾT ĐỀ SỐ 6 Bài 1.( 1,5điểm) 1. Tính giá trị các biểu thức sau: = = = = = 2. Chứng minh rằng Biến đổi vế trái ta có: = = = = Vậy Bài 2.(2điểm) Rút gọn biểu thức P. P = ( Với a 0 ; a 4 ) = = = Tính tại a thoả mãn điều kiện a2 – 7a + 12 = 0 Ta có: a2 – 7a + 12 = 0 (thỏa mãn đk) ; a = 4( loại) Với a = 3 = Tìm giá trị của a sao cho P = a + 1 P = a + 1 = a + 1 . Vì . Do đó: (thỏa mãn đk) Vậy : P = a + 1 Bài 3. (2điểm) (d1): y = và (d2): y = 1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy. (d1) là đường thẳng đi qua hai điểm (0; 2) và (d2) là đường thẳng đi qua hai điểm (0; 2) và 2. Tính chu vi và diện tích của tam giác ABC (d1) và (d2) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2 Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được: ; Chu vi tam giác ABC : AC + BC + AB = (cm) Diện tích tam giác ABC : Bài 4. (4,5 điểm) 1) Chứng minh AH BC . ΔBMC và ΔBNC nội tiếp đường tròn (O) đường kính BC Suy ra BMC = BNC = 900. Do đó: , , Tam giác ABC có hai đường cao BN , CM cắt nhau tại H Do đó H là trực tâm tam giác. Vậy AH BC. 2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O) OB = OM (bk đường tròn (O)) ΔBOM cân ở M. Do đó: OMB = OBM (1) ΔAMH vuông ở M , E là trung điểm AH nên AE = HE = . Vậy ΔAME cân ở E. Do đó: AME = MAE (2) Từ (1) và (2) suy ra: OMB + AME = MBO + MAH. Mà MBO + MAH = 900 (vì AH BC ) Nên OMB + AME = 900. Do đó EMO = 900. Vậy ME là tiếp tuyến của đường tròn (O) 3) Chứng minh MN. OE = 2ME. MO OM = ON và EM = EN nên OE là đường trung trực MN. Do đó OE MN tại K và MK = . ΔEMO vuông ở M , MK OE nên ME. MO = MK . OE = .OE. Suy ra: MN. OE = 2ME. MO 4) Giả sử AH = BC. Tính tang BAC. ΔBNC và ΔANH vuông ở N có BC = AH và NBC = NAH (cùng phụ góc ACB) ΔBNC = ΔANH (cạnh huyền, góc nhọn) BN = AN. ΔANB vuông ở N tanNAB = . Do đó: tanBAC = 1. ----------------------------
Tài liệu đính kèm: